
Practical Training for CNNs
Neural Networks Design And Application
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Practical tricks

• Batch normalization and local response normalization

• Data augmentation

• Dropout

• Regularization/weight decay

• Pre-train

• Stagewise training
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Rescaling images
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Rescaling images
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Rescaling images

Centering images
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Rescaling images

Centering images Standardize images
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Rescaling images

Centering images Standardize images

To bound the values of data
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Local response normalization

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac 
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Local response normalization

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac 
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Local response normalization
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Local response normalization

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac 
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Local response normalization

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac 

Original valueOutput value

Surrounding elements
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Local response normalization

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac 
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Squared values of 
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Local response normalization
N=2, K=0, 𝛼 = 1, 𝛽 = 1
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Local response normalization
N=2, K=0, 𝛼 = 1, 𝛽 = 1
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Local response normalization

1/( ? ) = ?

N=2, K=0, 𝛼 = 1, 𝛽 = 1
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Local response normalization

1/(0 + 4 + 1 + 4)=?

N=2, K=0, 𝛼 = 1, 𝛽 = 1
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Local response normalization

1/(0 + 4 + 1 + 4)=1/9

N=2, K=0, 𝛼 = 1, 𝛽 = 1
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Local response normalization
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Local response normalization
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Inter-channel:



Local response normalization
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Inter-channel:



Local response normalization
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Batch normalization [BN]
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Batch normalization [BN]
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Batch normalization [BN]

Rescaling for a batch
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Batch normalization [BN]

Rescaling for a batch
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Batch normalization [BN]

Rescaling for a batch

A linear model as output

27



Batch normalization [BN]

Rescaling for a batch

A linear model as output:
There are two learnable parameters
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Data augmentation

• Increase the amount of data by:
• Adding slightly modified copies of already existing data, or 

• Newly created synthetic data from existing data

Vertical flipping
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Data augmentation

• Increase the amount of data by:
• Adding slightly modified copies of already existing data, or 

• Newly created synthetic data from existing data

Vertical flipping
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Data augmentation

• Increase the amount of data by:
• Adding slightly modified copies of already existing data, or 

• Newly created synthetic data from existing data

Horizontal flipping
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Data augmentation

• Increase the amount of data by:
• Adding slightly modified copies of already existing data, or 

• Newly created synthetic data from existing data

Resize and cropping 
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Data augmentation

• Increase the amount of data by:
• Adding slightly modified copies of already existing data, or 

• Newly created synthetic data from existing data

Changing brightness
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Data augmentation

• Increase the amount of data by:
• Adding slightly modified copies of already existing data, or 

• Newly created synthetic data from existing data

Color jitter:
brightness, contrast, saturation, hue
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Why data augmentation
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Why data augmentation

Consider: when our images only contain Ford cars facing left and Chevrolet cars facing right…
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Why data augmentation

Consider: when our images only contain Ford cars facing left and Chevrolet cars facing right…
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Why data augmentation

Consider: when our images only contain Ford cars facing left and Chevrolet cars facing right…

Our CNN may predict this car (facing right) to Chevrolet…
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Why data augmentation

Consider: when our images only contain Ford cars facing left and Chevrolet cars facing right…

Data augmentation:
Gives more variations for data
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Our CNN may predict this car (facing right) to Chevrolet…



Why data augmentation

Consider: when our images only contain Ford cars facing left and Chevrolet cars facing right…

Data augmentation:
Gives more variations for data → better generalization
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Our CNN may predict this car (facing right) to Chevrolet…



Dropout 
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Dropout 
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Dropout 

Dropout in training: select an arbitrary percentage of neurons (weights) and mask them
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Dropout 

Dropout in training: select an arbitrary percentage of neurons (weights) and mask them
Dropout in testing: use all parameters, no dropout
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Dropout 
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Dropout 

Why dropout? 
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Dropout 

Why dropout? → alleviate overfitting
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Regularization/weight decay
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Regularization/weight decay

Origin 
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Regularization/weight decay

Linear 
model

Quadratic 
model

Polynomial model 
(9 degree)

Origin 
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Regularization/weight decay

Linear 
model

Quadratic 
model

Polynomial model 
(9 degree)

Origin Improve generalization performance
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Pre-train

Suppose we have a learned model → weight parameters are determined and fixed
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Pre-train

Suppose we have a learned model → weight parameters are determined and fixed

AlexNet for ImageNet: 1000 classes
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Pre-train

Suppose we have a learned model → weight parameters are determined and fixed

AlexNet for ImageNet: 1000 classes
vs

Now: Two classes
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Pre-train

Suppose we have a learned model → weight parameters are determined and fixed

vs

2
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Now: Two classes



Pre-train

Suppose we have a learned model → weight parameters are determined and fixed

vs

2

fcfcfc
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Now: Two classes



Stagewise/restart training
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Stagewise/restart training

For t=1→T

Compute stochastic gradients 𝐺𝑡for 𝑤𝑡

Update 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝐺𝑡
Endfor

One-loop SGD

58



Stagewise/restart training

For t=1→T

Compute stochastic gradients 𝐺𝑡for 𝑤𝑡

Update 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑠𝐺𝑡
Endfor

For s=1→S

Endfor

Two-loop SGD
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Stagewise/restart training

For t=1→T

Compute stochastic gradients 𝐺𝑡for 𝑤𝑡

Update 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑠𝐺𝑡
Endfor

For s=1→S

Endfor

Two-loop SGD
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Stagewise/restart training

For t=1→T

Compute stochastic gradients 𝐺𝑡for 𝑤𝑡

Update 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑠𝐺𝑡
Endfor

For s=1→S

Endfor

𝜂𝑠 = 0.01

𝜂𝑠 = 0.001

𝜂𝑠 = 0.0001

Two-loop SGD
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Many other tricks for CNNs

• Large mini-batch in stochastic gradient descent

• Learning rate warmup [warmup]

• Mixup augmentation [mixup]

• Others, e.g., [BagOfTricks]
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