Sequence Data and Recurrent Neural Networks

Neural Networks Design And Application

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Some data may not be independent

Some data may not be independent

Some data may not be independent

<u>A demo video of YOLOv3 from https://pjreddie.com/darknet/yolo/</u>

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Image data: a single sample

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Video data: multiple frames per second

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Video data: multiple frames per second

17

Video data: multiple

frames per second

Video data: multiple frames per second

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Video data: multiple frames per second

Video data: multiple frames per second

Image data: a single sample

Q: what if video data (e.g., 60 frame per second)?

Image (input) level \rightarrow

No interaction

 $h \leftarrow f(x)$

Q: how to describe this structure?

Only one output: summary of a sequence

(Predict a label for a video)

Video data: multiple frames per second

Video data: multiple frames per second Action recognition

Video data: multiple frames per second Action recognition

Image credit: Boston dynamics

Video data: multiple frames per second Action recognition

Video data: multiple frames per second

Action recognition

Vanilla

CNNs

Video data: multiple frames per second Action recognition many to one

Video data: multiple frames per second

Image credit: Boston dynamics

Q: what is the action?

Q: what is the action?

Running or opening a door?

Q: what is the action?

Image credit: Boston dynamics

Q: what is the action?

Running or opening a door?

Q: what is the action?

Image credit: Boston dynamics

Q: what is the action?

Running or opening a door?

Action recognition: predict a label from given multiple frames Q: what is the action? Running or opening a door?

Image credit: Boston ⁶⁶dynamics

Vanilla

CNNs

Video data: multiple frames per second Action recognition many to many

Video data: multiple frames per second

Q: what is the action?

Image credit: Boston dynamics

Q: what is the action?

Q: what is the action?

Q: what is the action?

Run

Q: what is the action?

Runn

Q: what is the action?

Runni

Q: what is the action?

Runnin

Q: what is the action?

Running

Q: what is the action?

Running - Sequence data

Q: what is the action?

Opening a door

Q: what is the action?

Opening a door

Video captioning: Generate captions

What real applications?

Image classification

What real applications?

Action recognition

What real applications?

Video captioning

Q: what application?

Q: what application?

What real applications?

Q: what application?

Image captioning

Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

Image captioning

Figure from Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

What's the key?

Q: what application?

Share W

- Guess the word:
 - h

- Guess the word:
 - he

- Guess the word:
 - hel

- Guess the word:
 - hell

- Guess the word:
 - hello

- Guess the word:
 - hello
 - net

- Guess the word:
 - hello
 - netw

- Guess the word:
 - hello
 - netwo

- Guess the word:
 - hello
 - network

- Guess the word:
 - hello
 - network
 - |

- Guess the word:
 - hello
 - network
 - lan

- Guess the word:
 - hello
 - network
 - langu

- Guess the word:
 - hello
 - network
 - languag

- Guess the word:
 - hello
 - network
 - language

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - n
 - n

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - ne
 - ne

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - neu
 - net

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - neur
 - netw

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - neura
 - netwo

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - neural
 - network

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - neural
 - network

- Guess the word:
 - hello
 - network
 - language
- Sequence data: predict the next value
 - neural
 - network

- Guess the word:
 - hello
 - network
 - language

• Sequence data: predict the next value

- neural Information flow
- network

• Vocabulary: {a, b, ..., z}

- Vocabulary: {a, b, ..., z}
- Given a sequence of character:

- Vocabulary: {a, b, ..., z}
- Given a sequence of character:
 - hellx
 - mornixx
 - languaxx
 - neurxx
 - netwxxx
 - ...

- Vocabulary: {a, b, ..., z}
- Given a sequence of character:
 - hellx \rightarrow hello
 - mornixx \rightarrow morning
 - languaxx → language
 - neurxx \rightarrow neural
 - netwxxx \rightarrow network
 - ...

• Vocabulary: {h, e, l, o}

Word-level language model

• Vocabulary: {h, e, l, o} \rightarrow {ant, and, ..., network, ..., zoo}

Word-level language model

• Vocabulary: {h, e, l, o} \rightarrow {ant, and, ..., network, ..., zoo}

Word-level language model Change • Vocabulary: {h, e, l, o} $\stackrel{to}{\rightarrow}$ {ant, and, ..., network, ..., zoo} "" "e" "o" Sample .03 .25 .11 .11 .84 .20 .17 .02 Softmax .00 .50 .68 .08 .13 .05 .03 .79 0.5 1.0 0.1 0.2 2.2 -1.5 0.3 0.5 output layer -3.0 -1.0 1.9 -0.1 2.2 4.1 1.2 -1.1 W_hy 0.1 W_hh -0.3 0.3 1.0 hidden layer -0.5 0.9 -0.1 0.3 0.1 -0.3 0.7 0.9 Change W xh to 0 Character Word 0 0 0 0 1 0 input layer 0 0 0 0 0 input chars: "h"

Image captioning

Image captioning

Image captioning

Short-term dependence

the clouds are in the ???

Short-term dependence

the clouds are in the ???

Short-term dependence

the clouds are in the sky

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.

I spent my childhood outdoors.

Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers,

or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it.

I speak fluent ???.

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.

I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it. I speak fluent *French*.

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.

I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it. I speak fluent *French*.

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France.

I spent my childhood outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on the grass underneath the sun with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I cannot be more appreciative of it. I speak fluent *French*.