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Recurrent neural networks
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tanh function
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A conventional RNN
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A conventional RNN
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A conventional RNN

linear 
model (W)

BP BP
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𝑑 ℎ𝑡+𝑇

𝑑ℎ𝑡
= 𝑡𝑎𝑛ℎ′ ∗ 𝑡𝑎𝑛ℎ′ ∗ ⋯ ∗ ෑ 𝑊𝑡

Q: what issue will we have?

ෑ 𝑊𝑡 = 0.9100 = 0.000026561
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Gradient vanish

Sigmoid function

gradients->0

gradients->0

𝑓𝑖 → 𝑥𝑖

𝑓𝑛 … 𝑓2 𝑓1 𝑥 →?

𝑑𝑥𝑛

𝑑𝑥1
=

𝑑𝑥𝑛

𝑑𝑥𝑛−1
· ⋯ ·

𝑑𝑥2

𝑑𝑥1
·
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ResNet: shortcut connection

Conv layers

Addition operation

implication: same dimension
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Long-short term memory (LSTM) networks
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LSTM

Composition of all {ℎ𝑡}
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LSTM

hidden state/feature
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LSTM

cell state/feature
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LSTM
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LSTM
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LSTM
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LSTM

Elementwise multiplication/addition

35



LSTM
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LSTM
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LSTM

Forget gate:
Whether to erase cell
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LSTM

Input gate

cell input activation vector
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LSTM

Cell state
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LSTM

Output gate
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LSTM
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LSTM

= 𝑓𝑡 ∗ 𝑓𝑡−1 ∗ 𝐶𝑡−2 + 𝑜𝑡ℎ𝑒𝑟𝑠
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LSTM

= 𝑓𝑡 ∗ 𝑓𝑡−1 ∗ 𝐶𝑡−2 + 𝑜𝑡ℎ𝑒𝑟𝑠

Not multiplication of weights ς 𝑊𝑡
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Deep RNN

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html  
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Deep RNN

For each unit: a mapping

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html  

Formulations from: Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals. "Recurrent neural network 
regularization." arXiv preprint arXiv:1409.2329 (2014).
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Deep RNN

For each unit: a mapping

𝑥 ∈ 𝑅𝑛, 𝑊 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚
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Formulations from: Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals. "Recurrent neural network 
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(a mapping function)

W * 
ℎ𝑡−1

𝑥𝑡
ℎ𝑡 = 𝑓

𝑓 = tanh(·)

Vector feature
elementwise operation
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Deep LTSM

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html  

Formulations from: Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals. "Recurrent neural network 
regularization." arXiv preprint arXiv:1409.2329 (2014).
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Deep LTSM

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html  

Formulations from: Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals. "Recurrent neural network 
regularization." arXiv preprint arXiv:1409.2329 (2014).

weights
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Variant: peephole connections
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Variant: peephole connections
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Variant: gated recurrent unit (GRU)

Weighted average
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Variant: gated recurrent unit (GRU)

Weighted average
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Vanilla RNN and LSTM
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Generating baby names

Credit for https://github.com/wangshusen/DeepLearning/blob/master/Slides/9_RNN_5.pdf 
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Generating C code

Credit for https://github.com/wangshusen/DeepLearning/blob/master/Slides/9_RNN_5.pdf 
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Generating academic articles

Credit for https://github.com/wangshusen/DeepLearning/blob/master/Slides/9_RNN_5.pdf 
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In practice
Machine translation
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In practice
Machine translation

Q: can vanilla RNN handle machine translation?
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In practice
Machine translation

Q: can we find some correlation?
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Vanilla RNN information flow
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Vanilla RNN information flow

Past sequence
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Vanilla RNN information flow

Past sequence

Future sequence
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Vanilla RNN information flow

Past sequence

Future sequence

the clouds are in the sky
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Vanilla RNN information flow

Past sequence

Future sequence

I like this town very much. I started my undergraduate study in 2020 and my major is computer science. I like programming and 
reading. I usually get up at 7AM and do some exercise. I also go fishing at weekend. I grew up in France. I spent my childhood 
outdoors. Whether it was riding my bicycle around my neighborhood pretending it was a motorcycle, making mud cakes, going 
on treasure hunts, making and selling perfume out of strong smelling flowers, or simply laying on the grass underneath the sun 
with a soccer ball waiting for someone to come out and play with me, the outdoors was where I spent my childhood and I 
cannot be more appreciative of it. I speak fluent French.
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In practice

1st

3rd

Q: is vanilla RNN able to use information flow to generate Européen?
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In practice

1st

3rd

Q: is vanilla RNN able to use information flow to generate Espace?
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In practice

1st

3rd

Q: is vanilla RNN able to use information flow to generate Espace?

84Q: what if we need some future sequence to determine the output sequence?



Bi-directional RNN
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Bi-directional RNN
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Bi-directional RNN
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Bi-directional RNN
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Bi-directional RNN

90
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Seq2seq architecture
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Seq2seq architecture

92



Seq2seq architecture
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Seq2seq architecture

Q: is vanilla RNN able to generate an output with different length of input?
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Vanilla RNN information flow

95



Vanilla RNN information flow
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Vanilla RNN information flow

Input length = ??
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Vanilla RNN information flow

Input length = t+3
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Vanilla RNN information flow

Input length = t+3

Output length = ??
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Vanilla RNN information flow

Input length = t+3

Output length = t+3

Q: what if the input and output sequences are of different length?
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Seq2seq RNN architecture

Figure 10.12 in deep learning book
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Seq2seq RNN architecture

A typo in Figure 10.12 in deep learning book 102



Seq2seq RNN architecture
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Seq2seq RNN architecture

input seq
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Seq2seq RNN architecture

input seq Q: the length of the input?
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Seq2seq RNN architecture

input seq Q: the length of the input?
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Seq2seq RNN architecture

hidden features
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Seq2seq RNN architecture
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Seq2seq RNN architecture

context
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Seq2seq RNN architecture

context
(feature)
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Seq2seq RNN architecture

hidden features
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Seq2seq RNN architecture

outputs
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Seq2seq RNN architecture

outputs

Q: length of outputs?
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Seq2seq RNN architecture

outputs

Q: length of outputs?
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Seq2seq RNN architecture

outputs

Q: length of outputs?
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