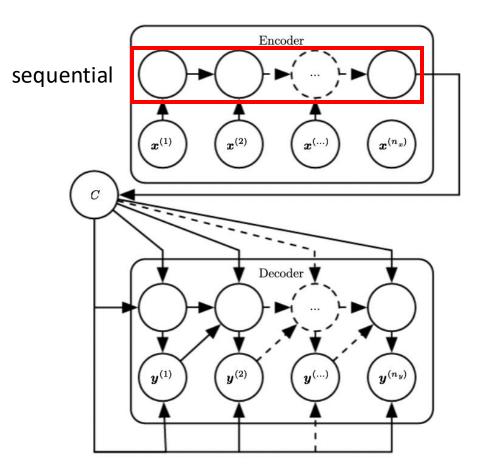
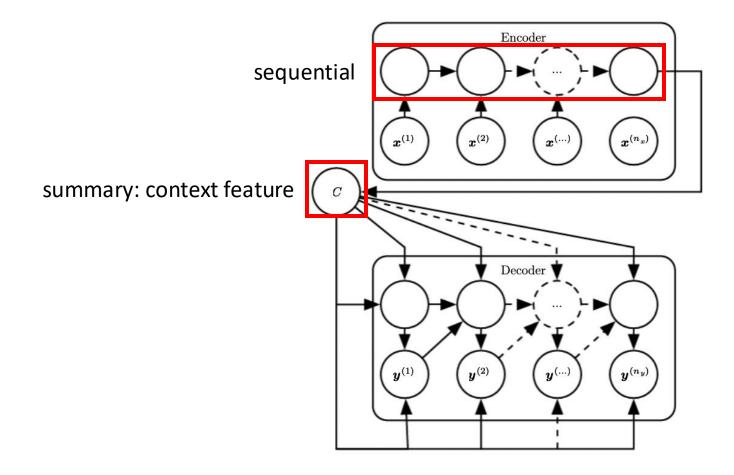
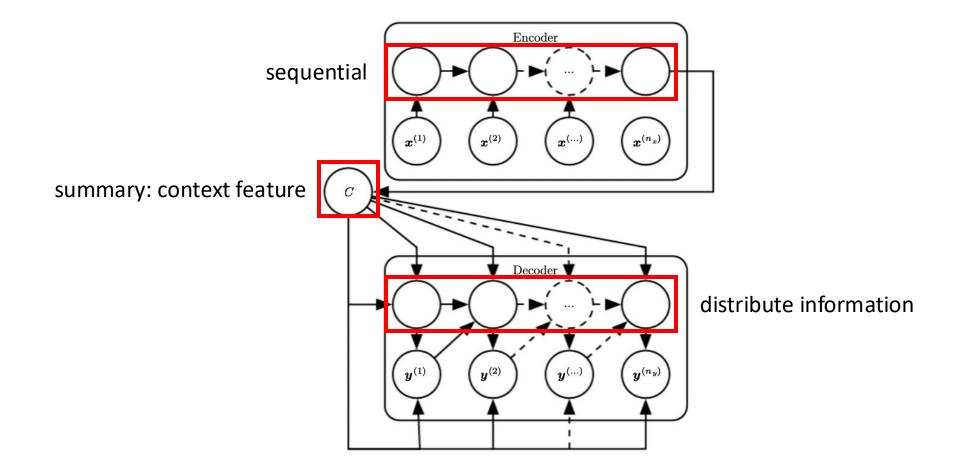
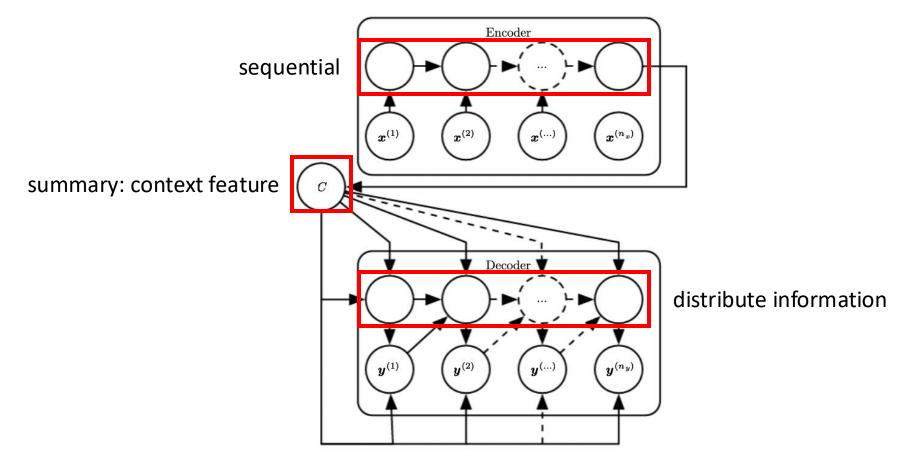
Attention and Transformers

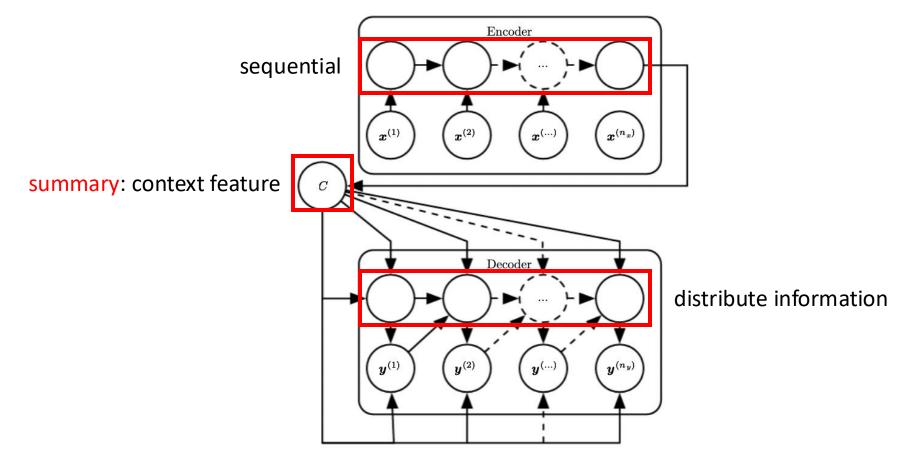
Neural Networks Design And Application

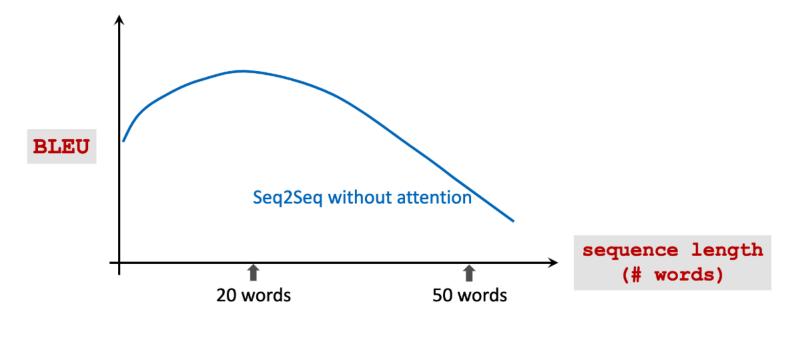




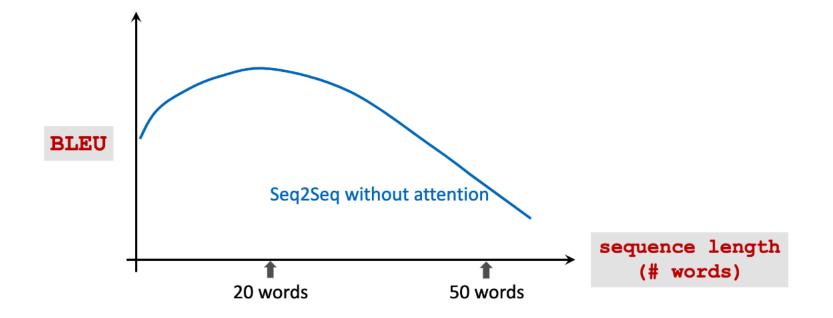


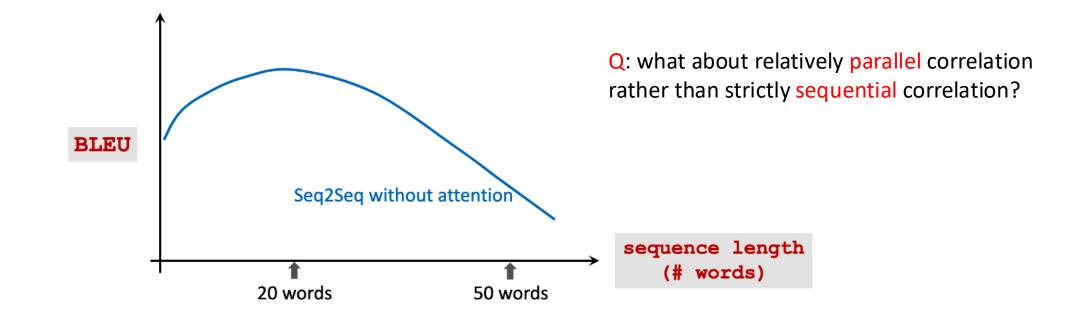


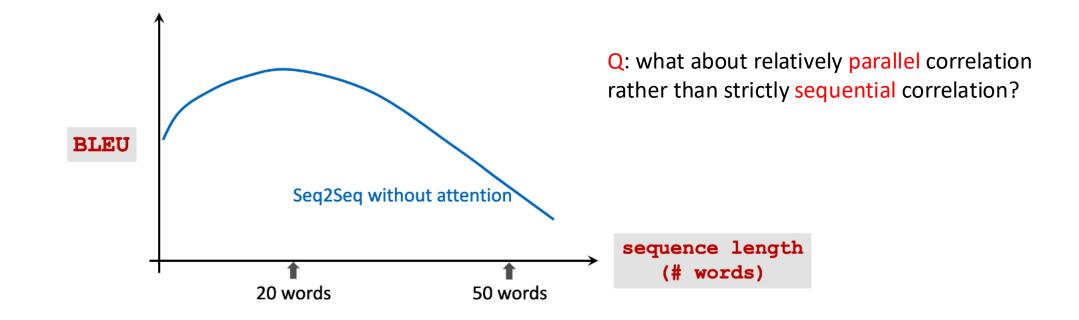


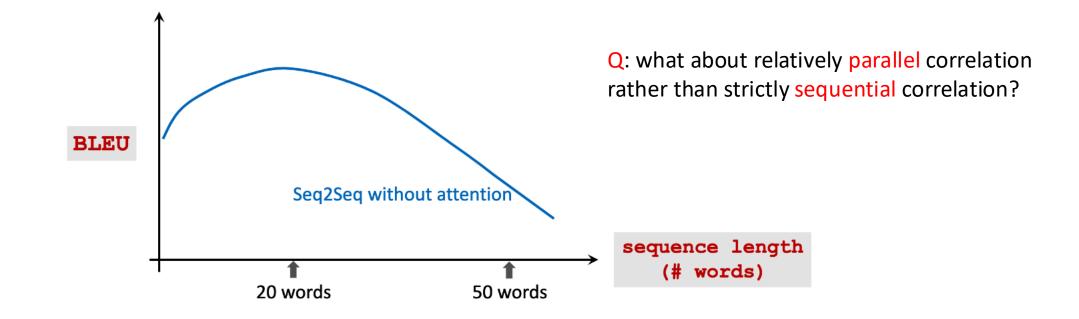


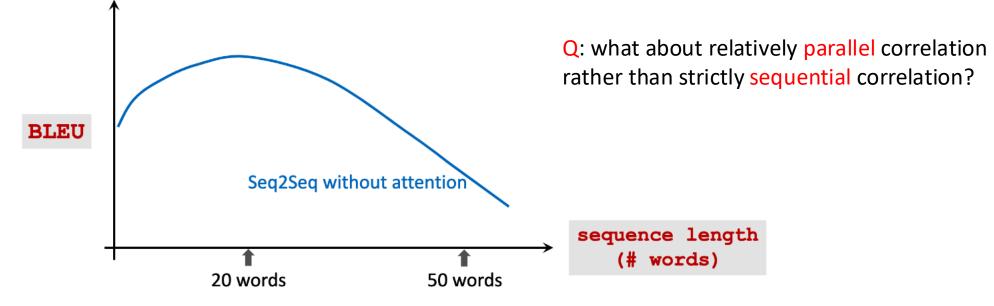
the clouds are in the sky



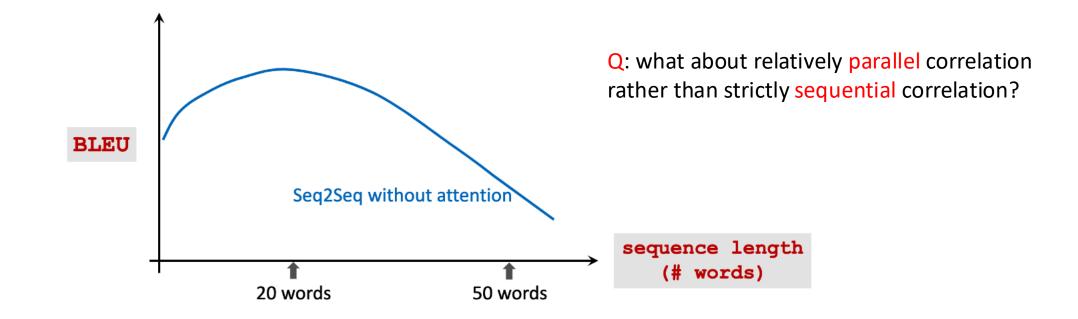






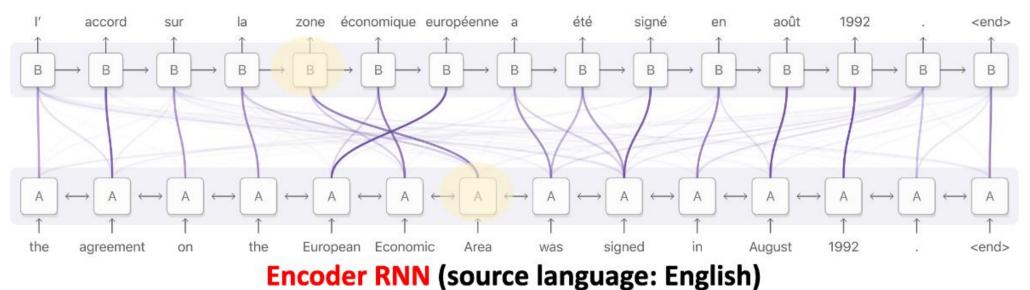


We need to summarize all context



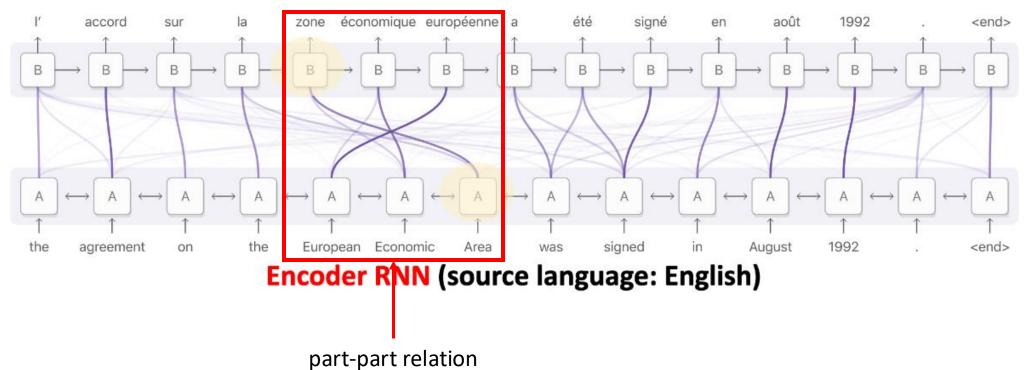
Input-output correlation

Decoder RNN (target language: French)

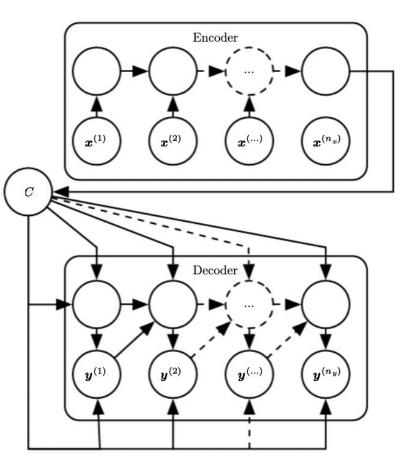


Input-output correlation

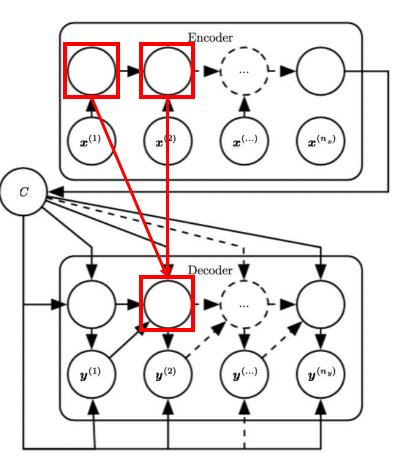
Decoder RNN (target language: French)

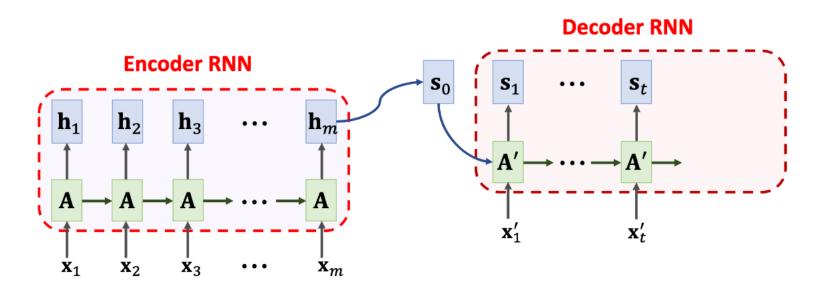


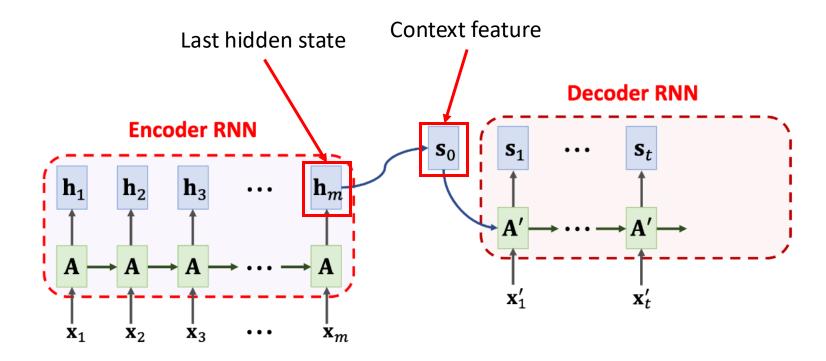
Q: can we create information flow between encoder and decoder nodes?

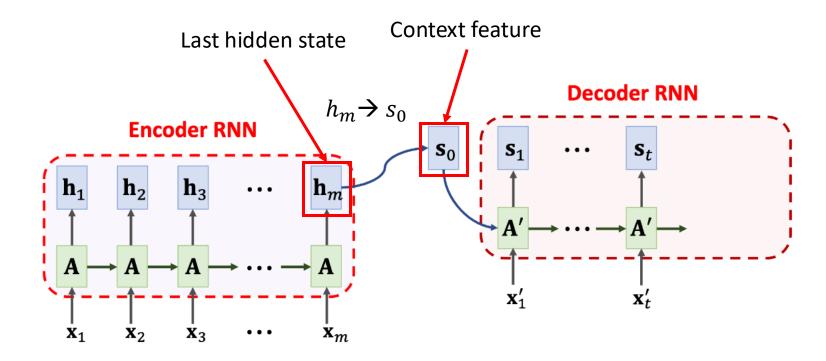


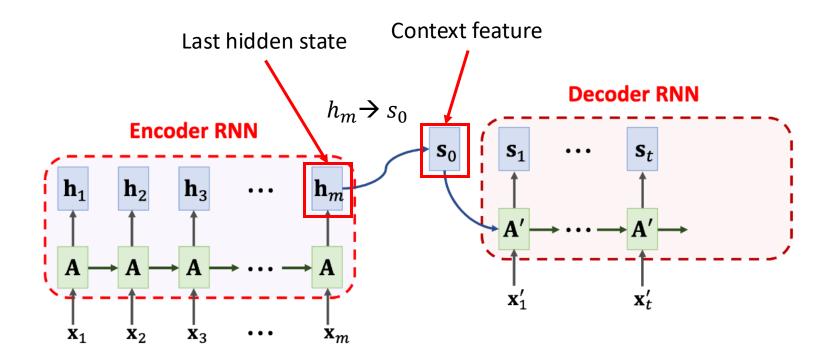
Q: can we create information flow between encoder and decoder nodes?



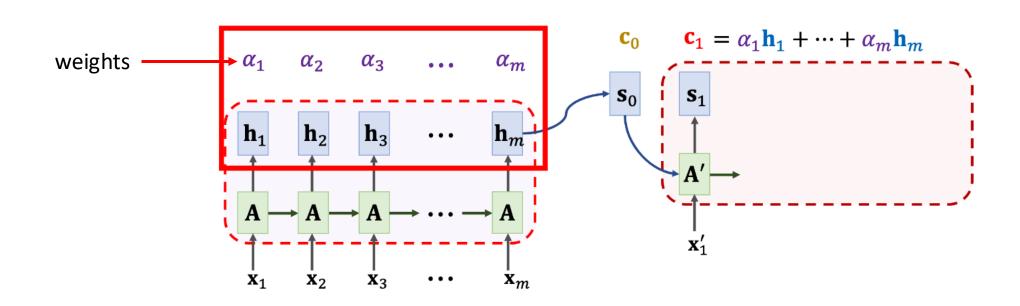


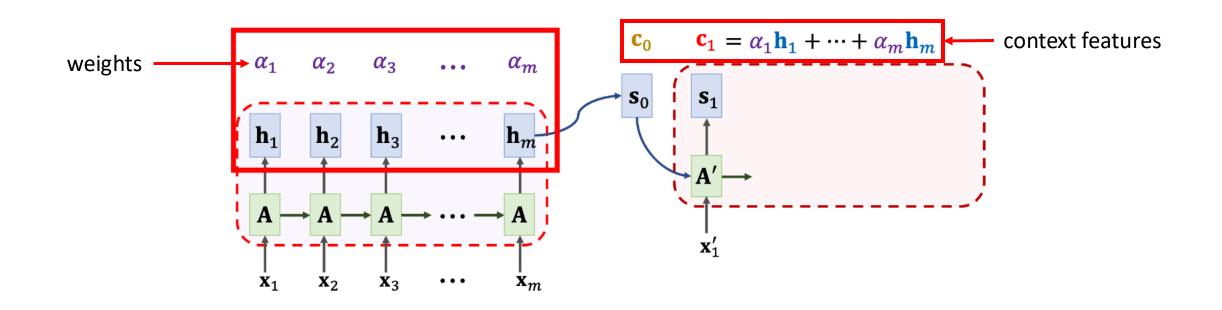


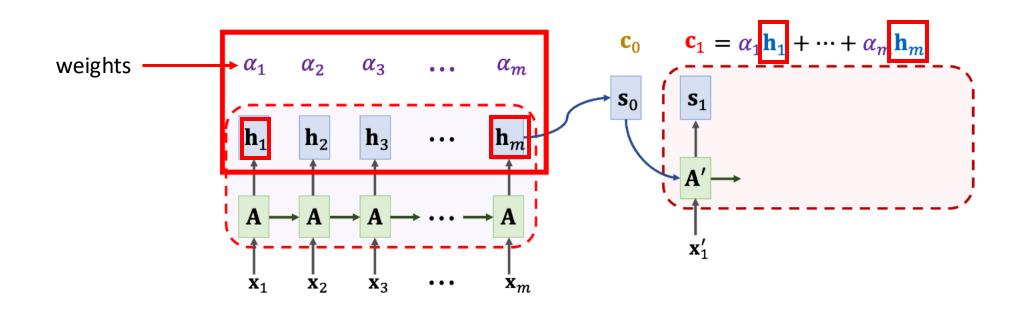


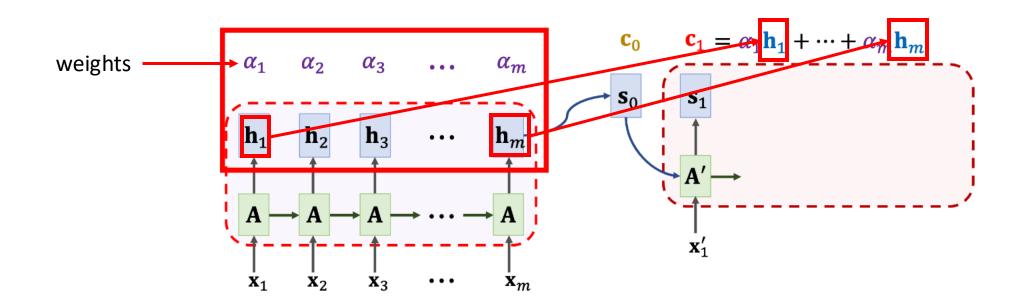


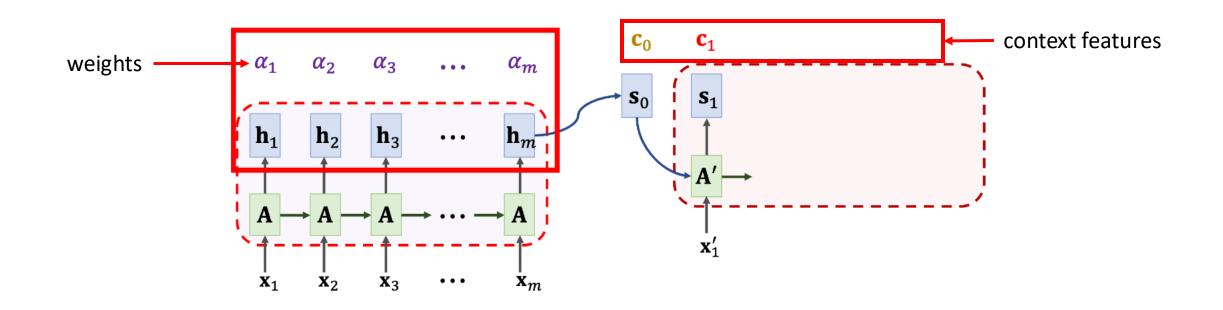
No direct connection between hidden states of encoder and decoder



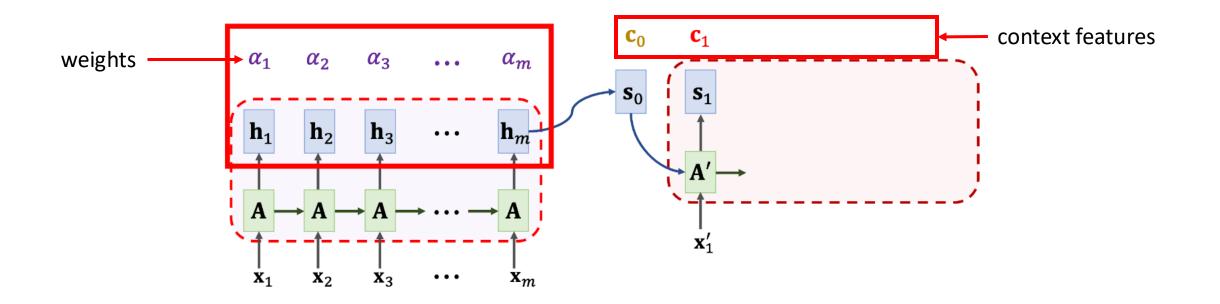




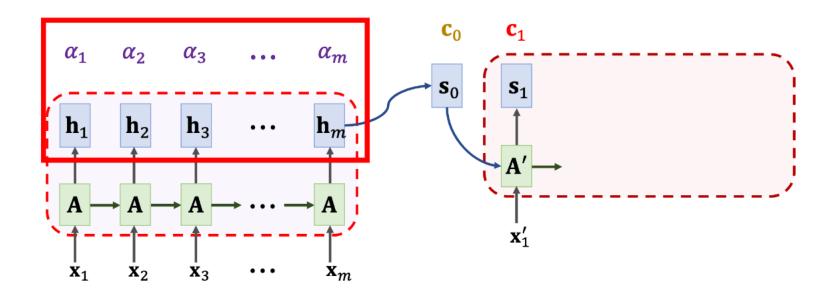




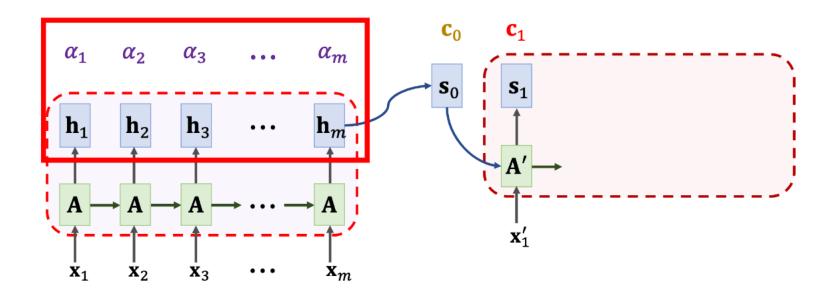
How to use the two variables to build information flow?



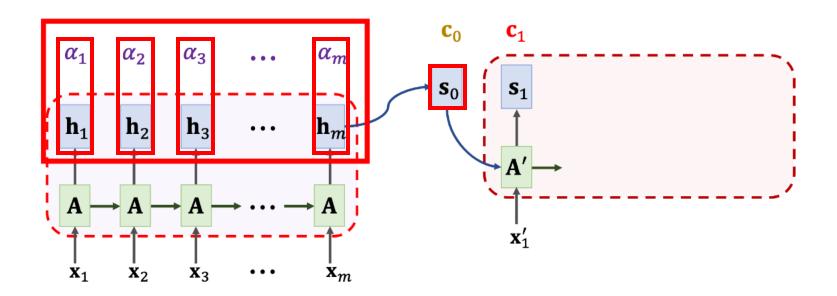
Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.



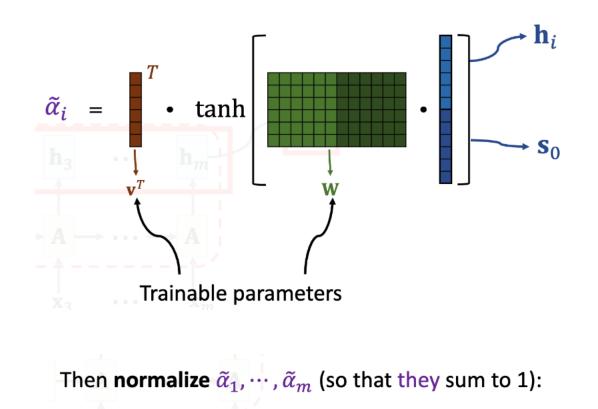
Weight: $\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{s}_0).$



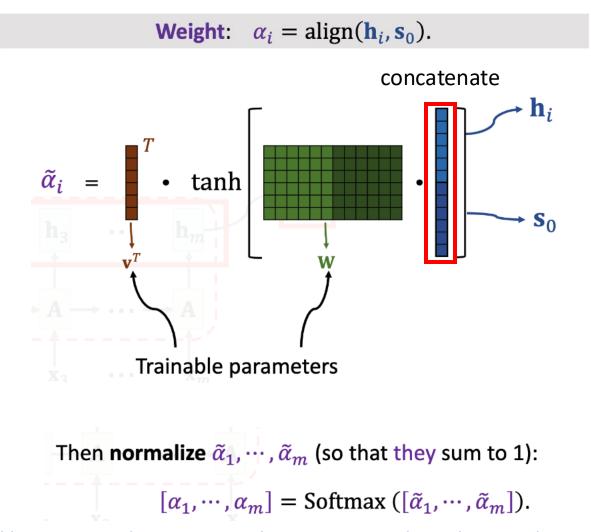
Weight: $\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{s}_0).$



Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0).$



 $[\alpha_1, \cdots, \alpha_m] = \text{Softmax} ([\tilde{\alpha}_1, \cdots, \tilde{\alpha}_m]).$



Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0).$ Linear model \mathbf{h}_i $\tilde{\alpha}_i$ = tanh • **S**₀ Trainable parameters Then **normalize** $\tilde{\alpha}_1, \dots, \tilde{\alpha}_m$ (so that they sum to 1):

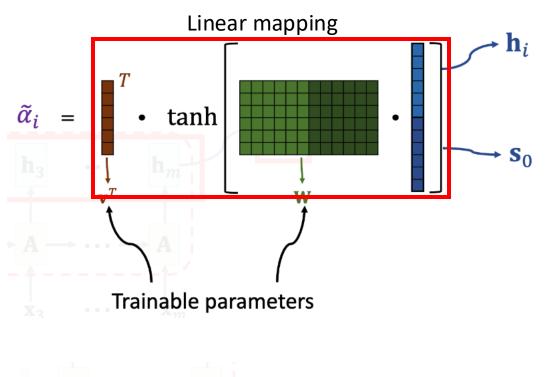
 $[\alpha_1, \cdots, \alpha_m] = \text{Softmax} ([\tilde{\alpha}_1, \cdots, \tilde{\alpha}_m]).$

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0).$ Nonlinear mapping **h**_i $\tilde{\alpha}_i$ tanh ٠ **S**₀ Trainable parameters

Then **normalize** $\tilde{\alpha}_1, \dots, \tilde{\alpha}_m$ (so that they sum to 1):

 $[\alpha_1, \cdots, \alpha_m] = \text{Softmax} ([\tilde{\alpha}_1, \cdots, \tilde{\alpha}_m]).$

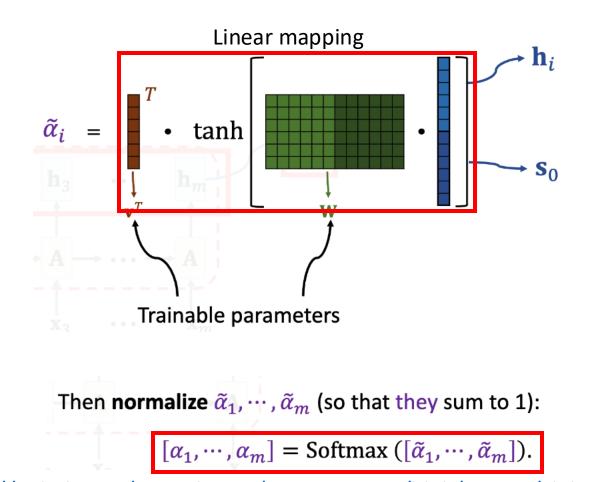
Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0).$

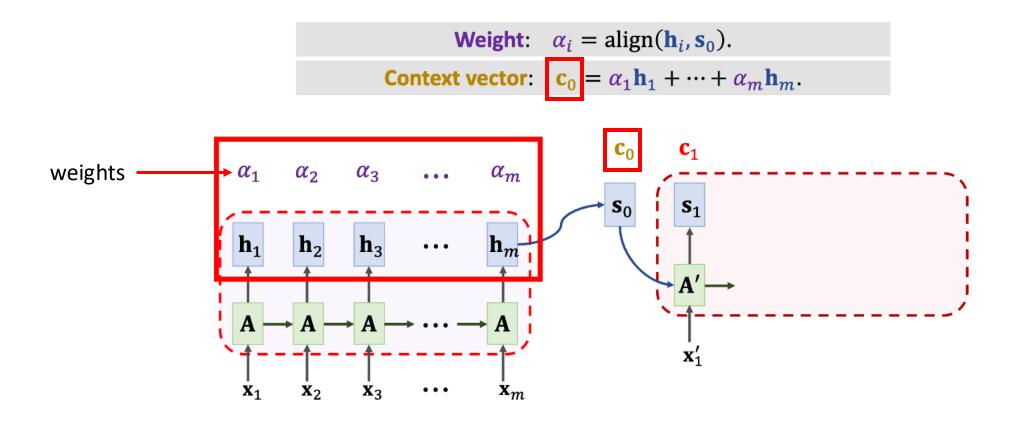


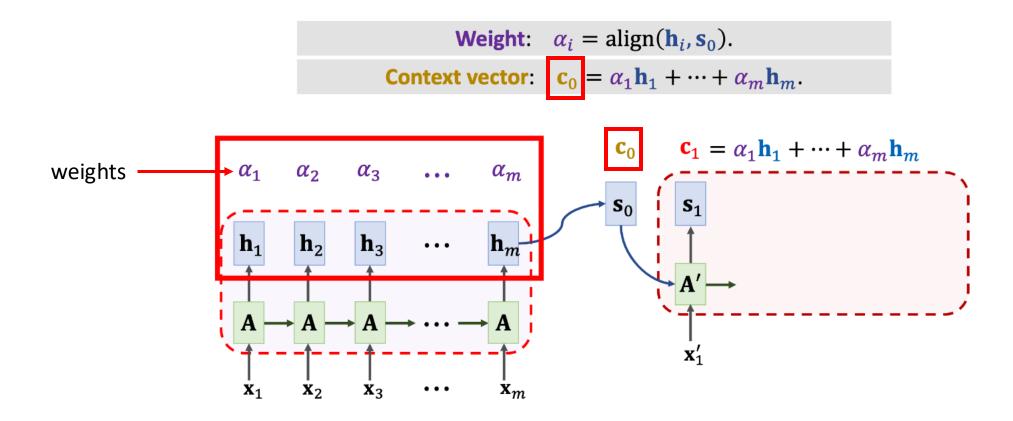
Then **normalize** $\tilde{\alpha}_1, \dots, \tilde{\alpha}_m$ (so that they sum to 1):

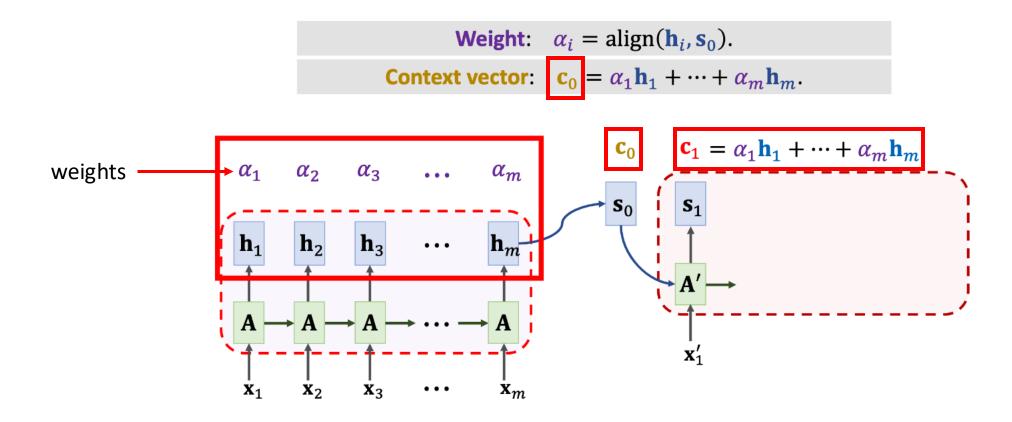
 $[\alpha_1, \cdots, \alpha_m] = \text{Softmax} ([\tilde{\alpha}_1, \cdots, \tilde{\alpha}_m]).$

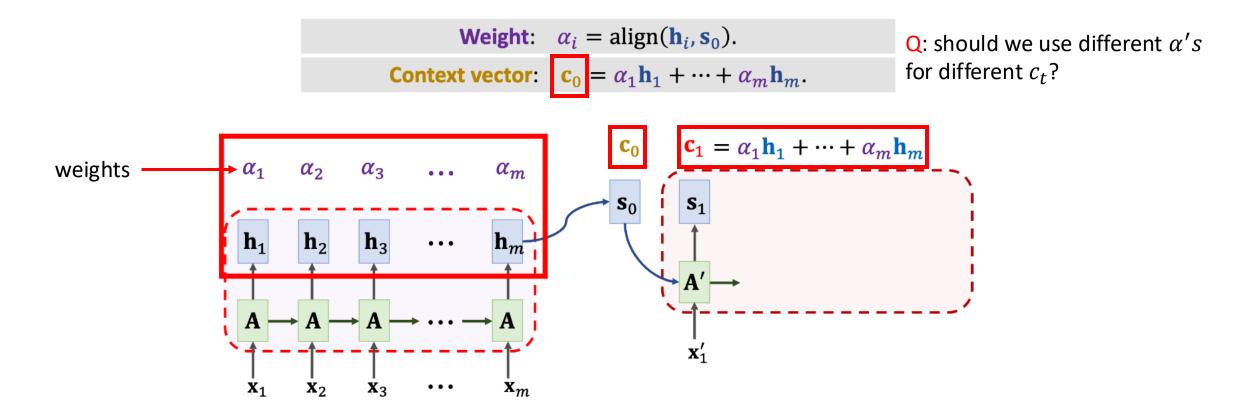
Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0).$

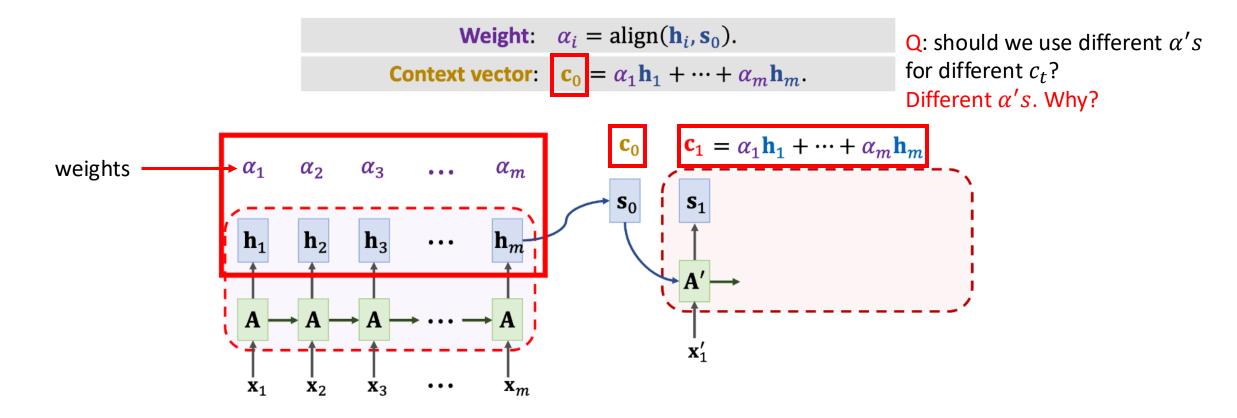


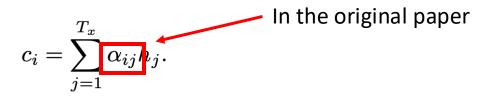


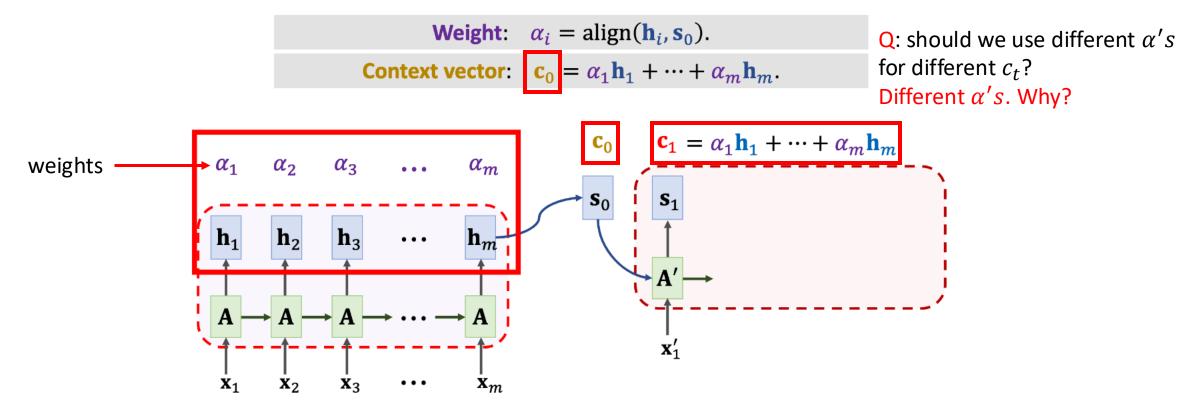


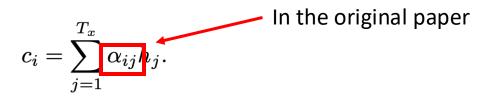


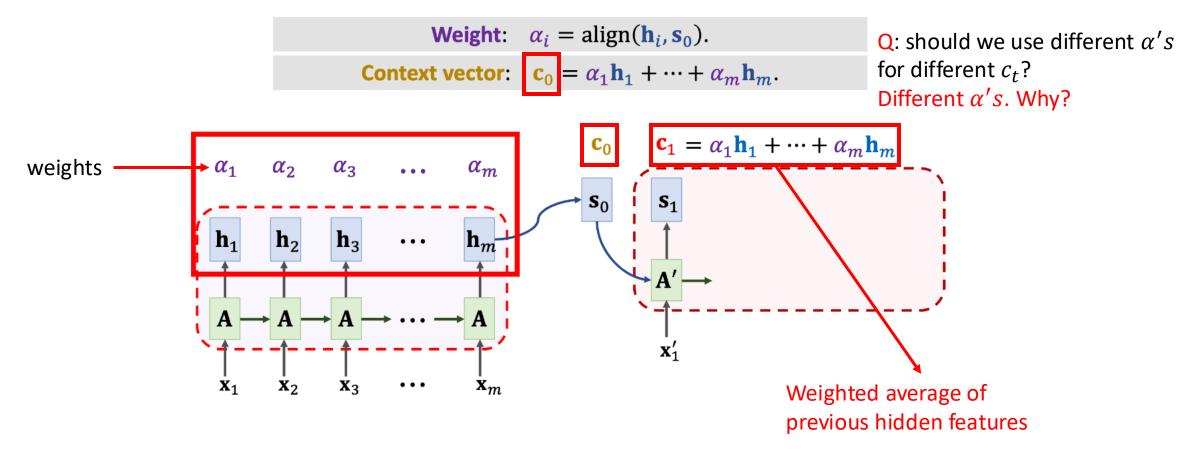


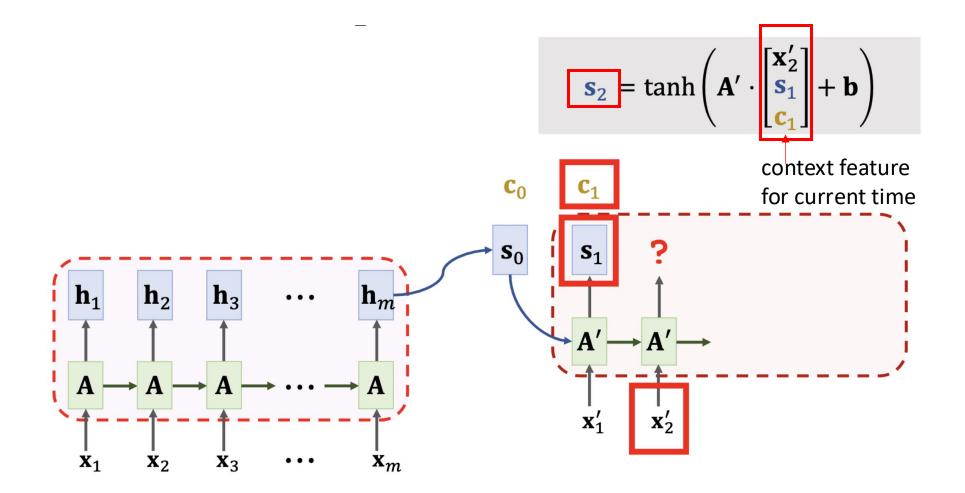


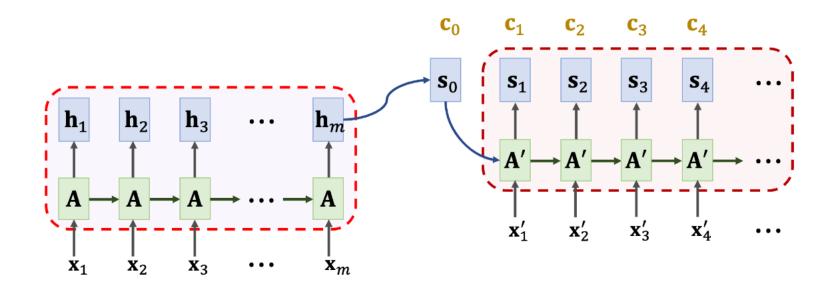


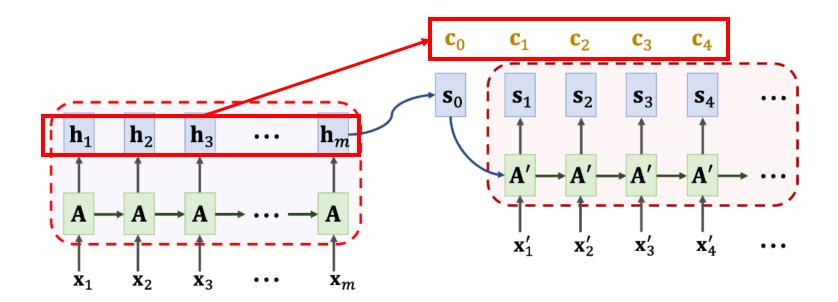






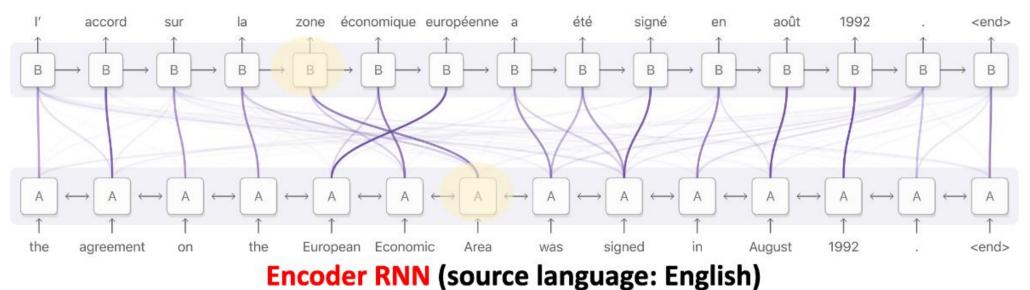






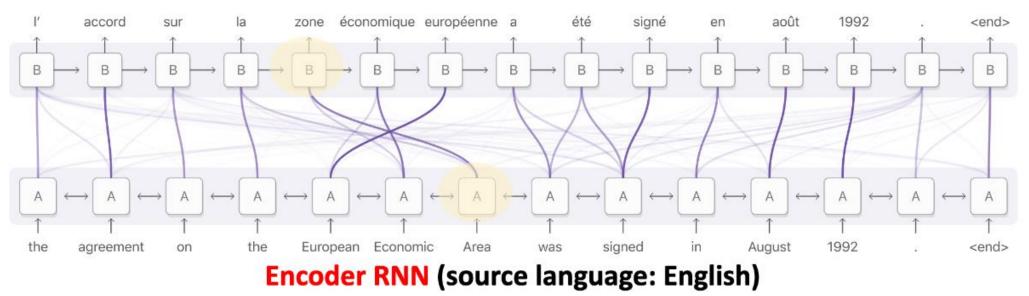
Input-output correlation

Decoder RNN (target language: French)

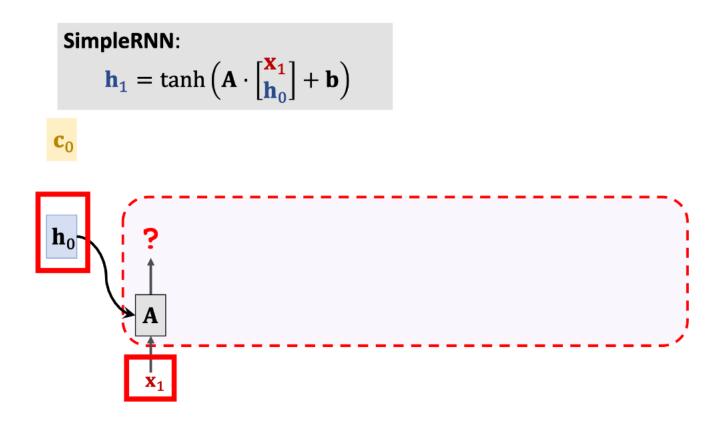


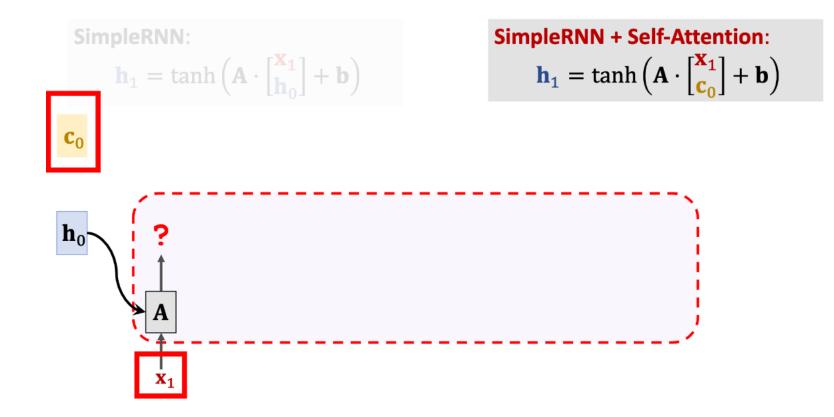
Input-output correlation

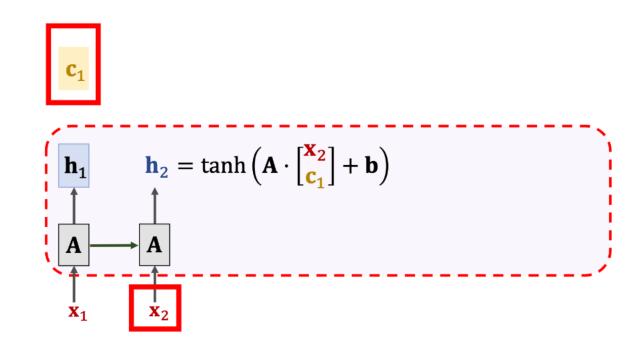
Decoder RNN (target language: French)



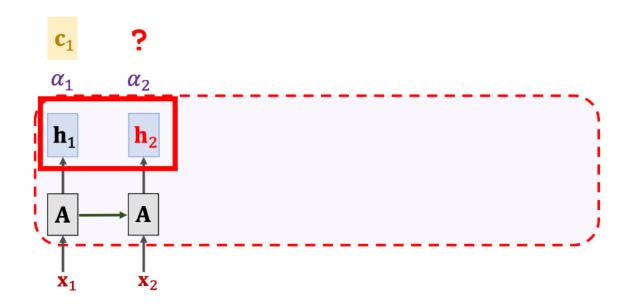
Q: can we build attention mechanism in a single RNN (e.g., the encoder)?

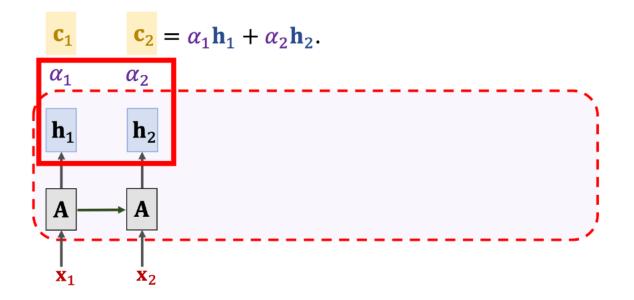


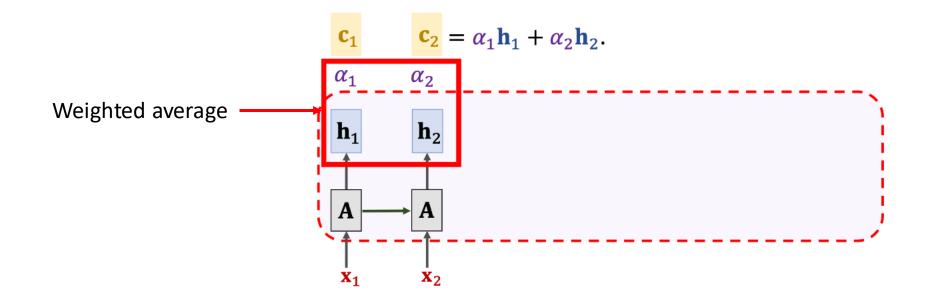


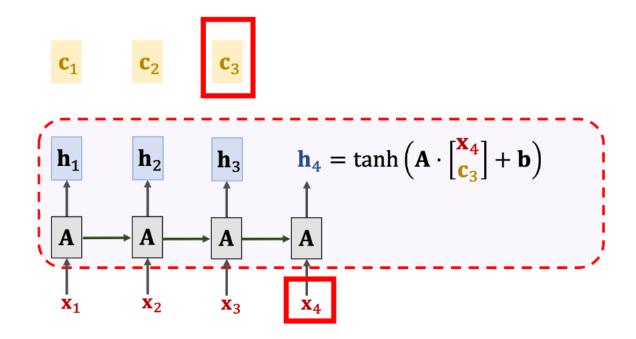


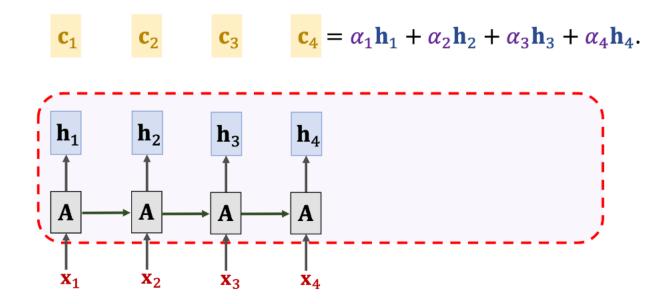
Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{h}_2).$











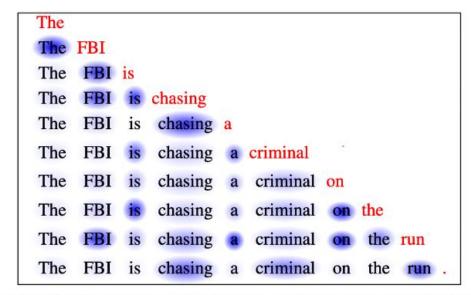
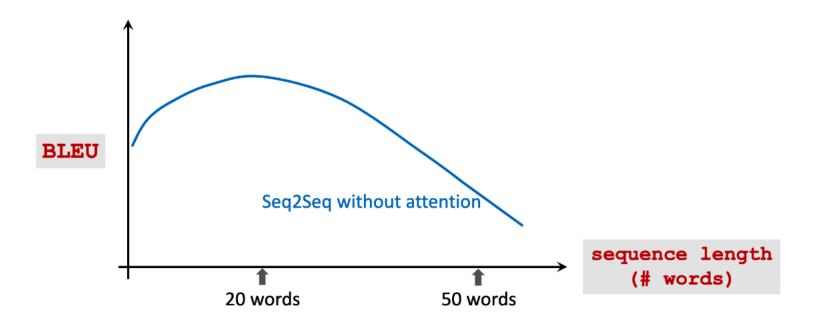


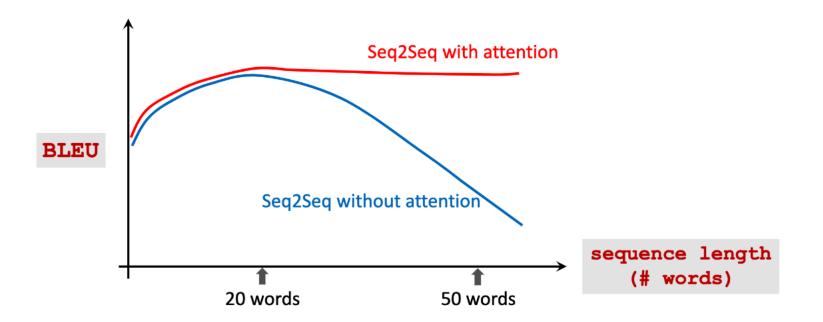
Figure is from the paper " Long Short-Term Memory-Networks for Machine Reading."

Pay attention to the context relevant to the new input

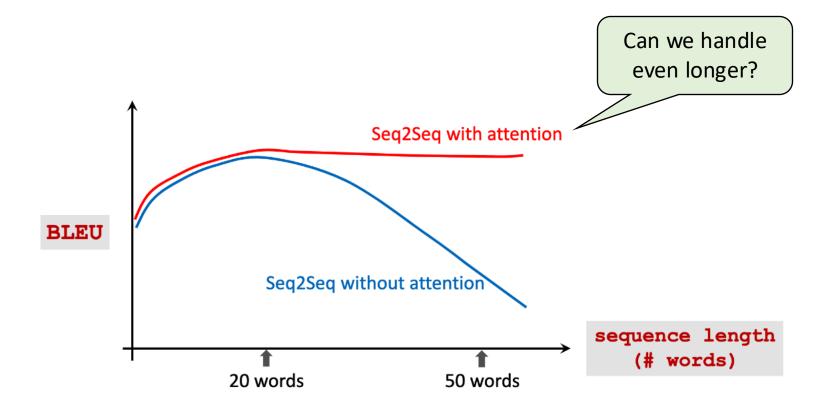
Seq2seq model performance



Seq2seq model performance



Seq2seq model performance



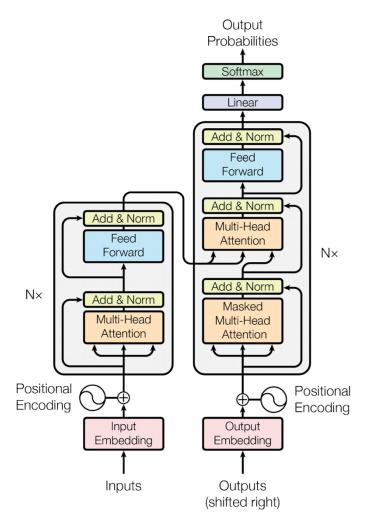


Figure 1: The Transformer - model architecture.

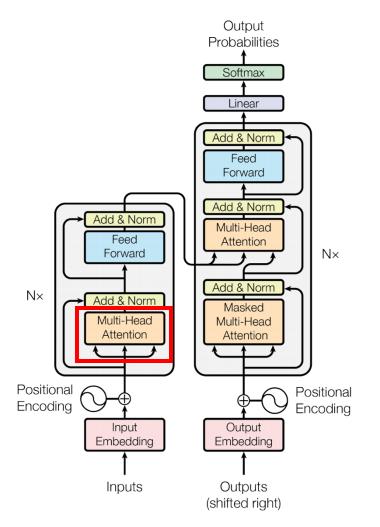


Figure 1: The Transformer - model architecture.

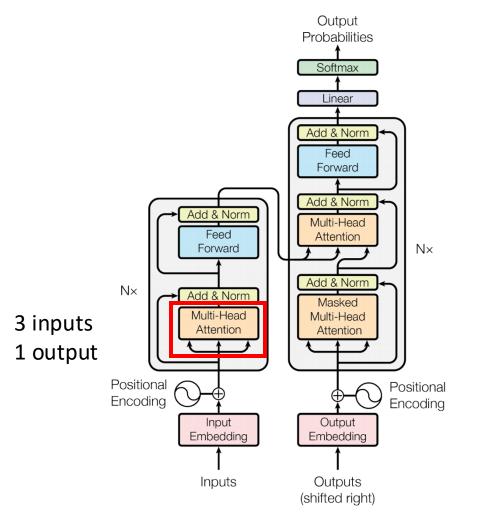
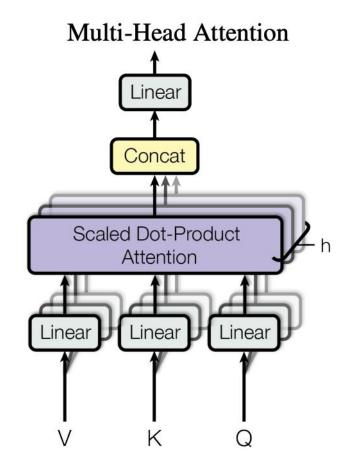
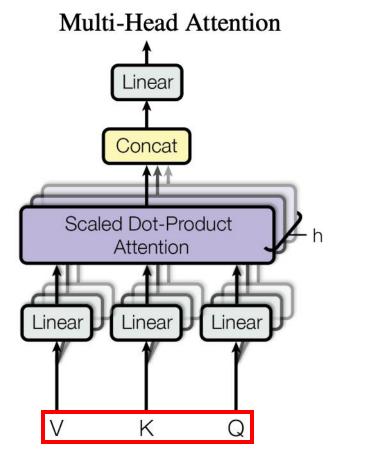
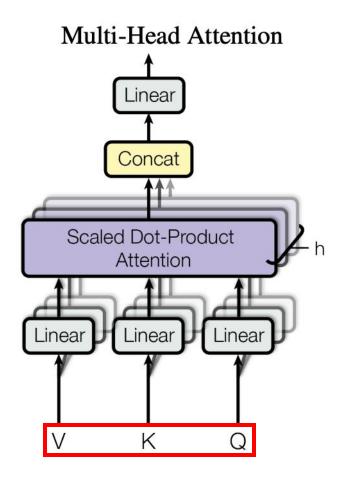


Figure 1: The Transformer - model architecture.



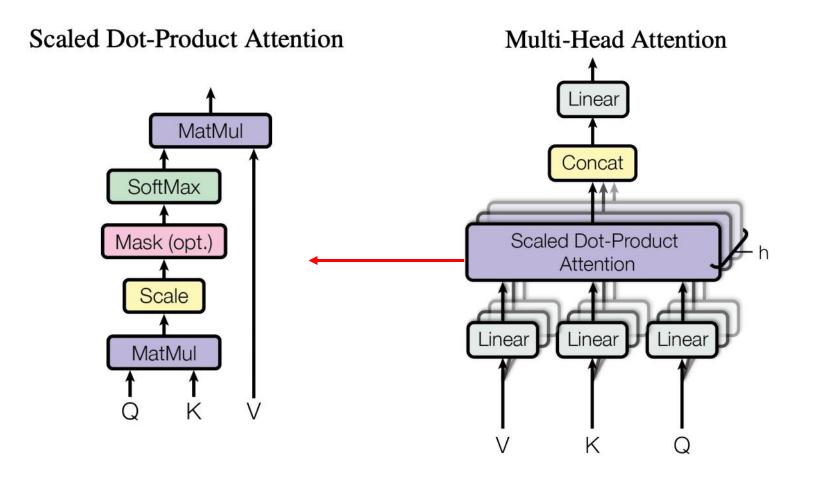


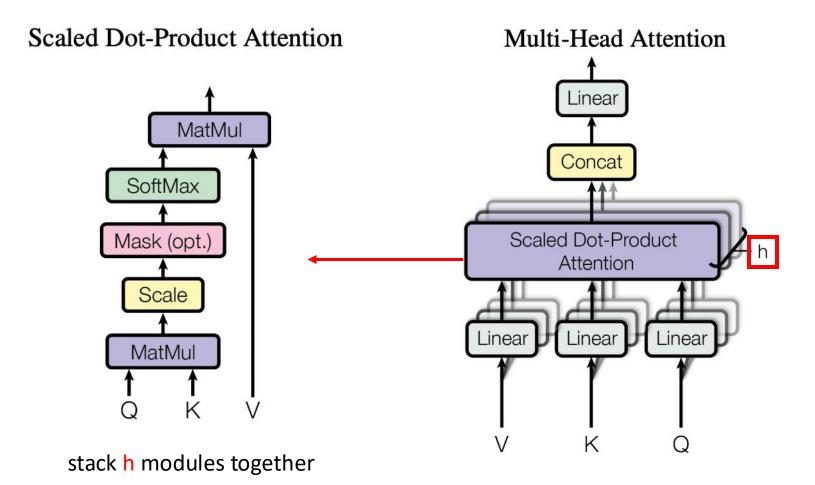
V: value K: key Q: query



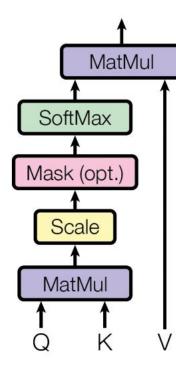
V: value K: key Q: query

Interpreted from information retrieval systems: https://stats.stackexchange.com/questio ns/421935/what-exactly-are-keysqueries-and-values-in-attentionmechanisms



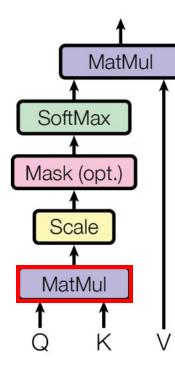


Scaled Dot-Product Attention



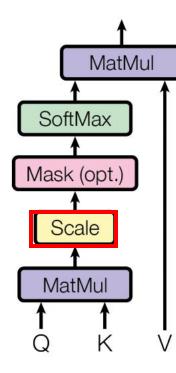
Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Scaled Dot-Product Attention



Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

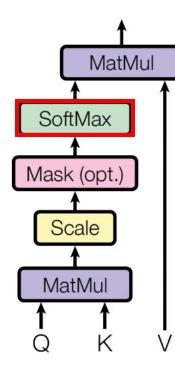
Scaled Dot-Product Attention



Attention
$$(Q, K, V) = \operatorname{softmax}(\begin{array}{c} QK^T \\ \sqrt{d_k} \end{array})V$$

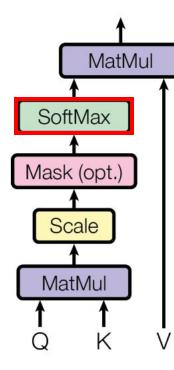
Dimension of keys

Scaled Dot-Product Attention



$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Scaled Dot-Product Attention

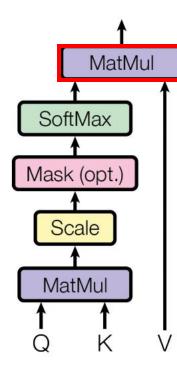


weights for selection (keys in a retrieval system)

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

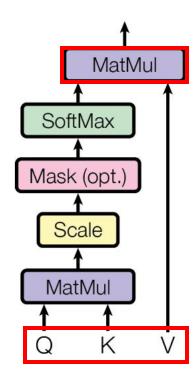
An example: one-hot format

Scaled Dot-Product Attention



$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

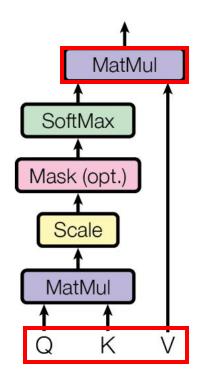
Scaled Dot-Product Attention



How to generate

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Scaled Dot-Product Attention

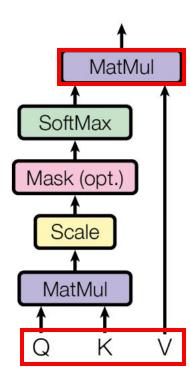


In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically. This consists of two linear transformations with a ReLU activation in between.

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$
(2)

While the linear transformations are the same across different positions, they use different parameters from layer to layer. Another way of describing this is as two convolutions with kernel size 1. The dimensionality of input and output is $d_{\text{model}} = 512$, and the inner-layer has dimensionality $d_{ff} = 2048$.

Scaled Dot-Product Attention



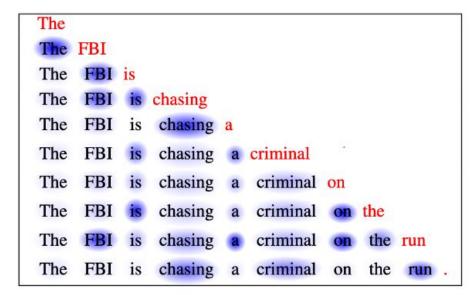
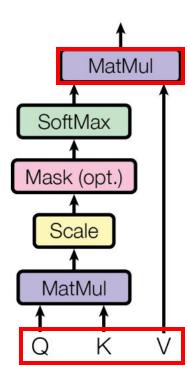
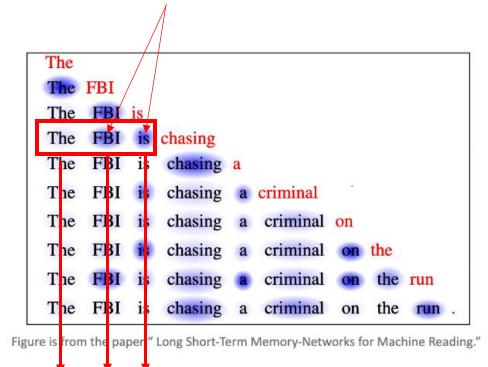


Figure is from the paper " Long Short-Term Memory-Networks for Machine Reading."

Scaled Dot-Product Attention



Greater weights (larger Softmax output)



Embedding feature vectors (a matrix)

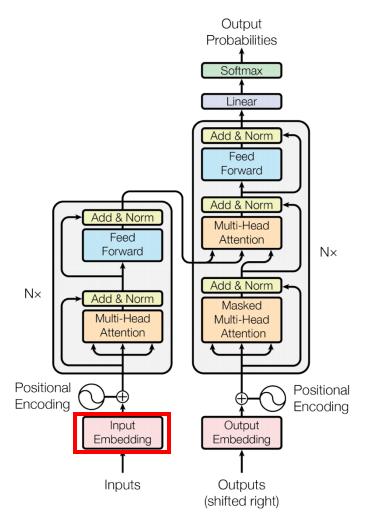


Figure 1: The Transformer - model architecture.

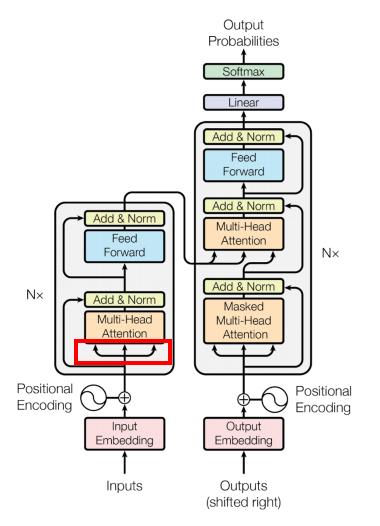


Figure 1: The Transformer - model architecture.

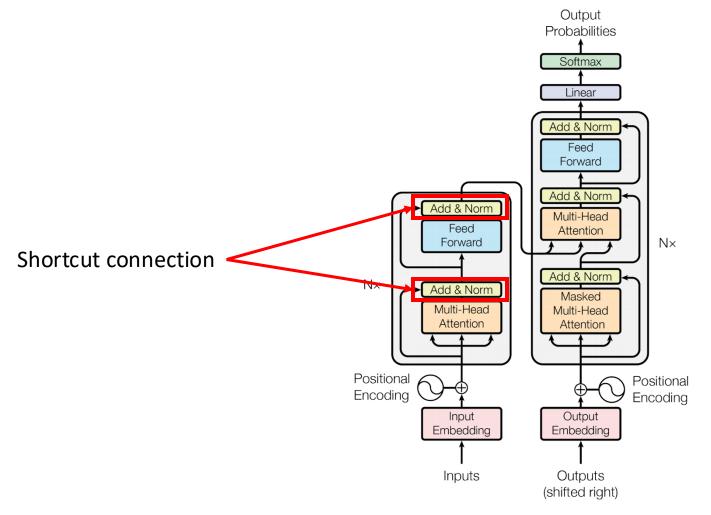


Figure 1: The Transformer - model architecture.

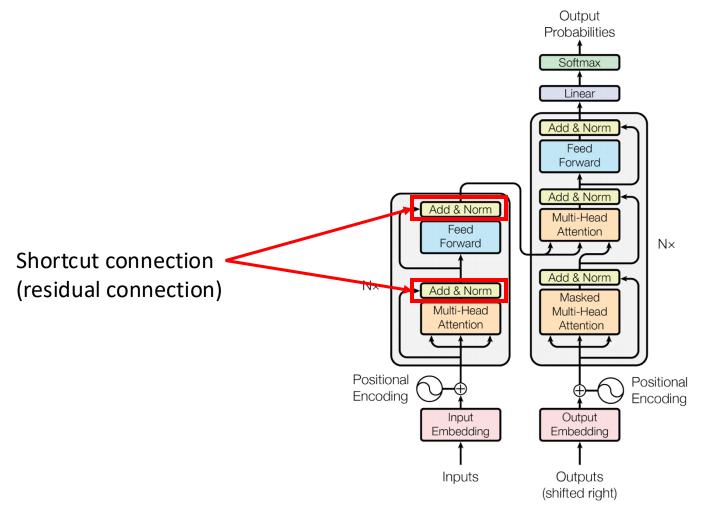


Figure 1: The Transformer - model architecture.

No recurrent structure \rightarrow not RNN

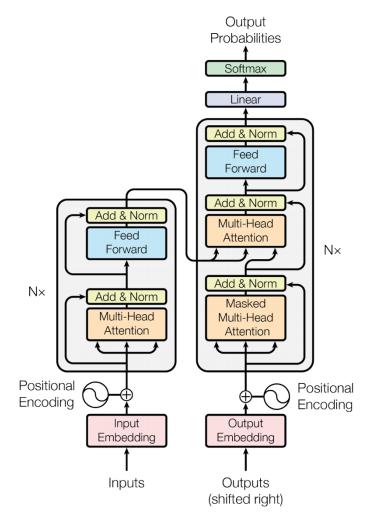


Figure 1: The Transformer - model architecture.

No recurrent structure \rightarrow not RNN

Q: any benefit?

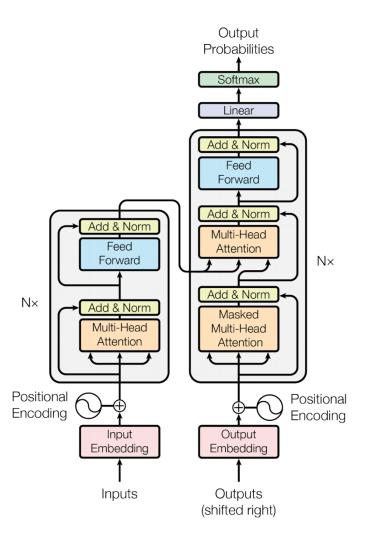


Figure 1: The Transformer - model architecture.

No recurrent structure \rightarrow not RNN

Q: any benefit?

1. No sequential dependence

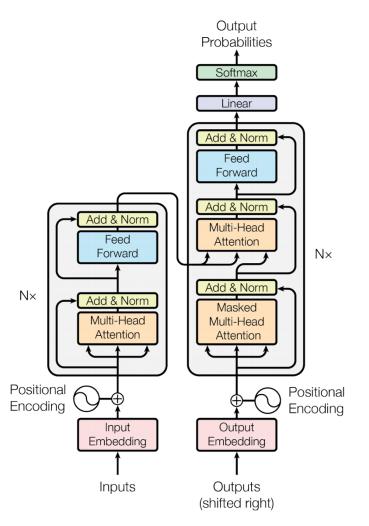


Figure 1: The Transformer - model architecture.

No recurrent structure \rightarrow not RNN

Q: any benefit?

1. No sequential dependence

2. Parallel processing

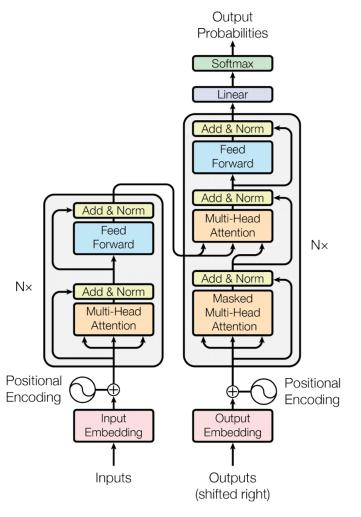


Figure 1: The Transformer - model architecture.

No recurrent structure \rightarrow not RNN

Q: any benefit?

- 1. No sequential dependence
- 2. Parallel processing

3. ...

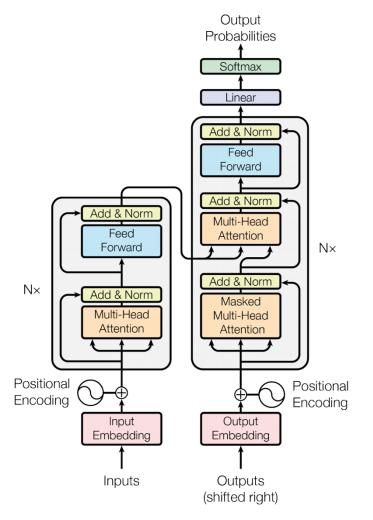


Figure 1: The Transformer - model architecture.

Al products based on Transformers

