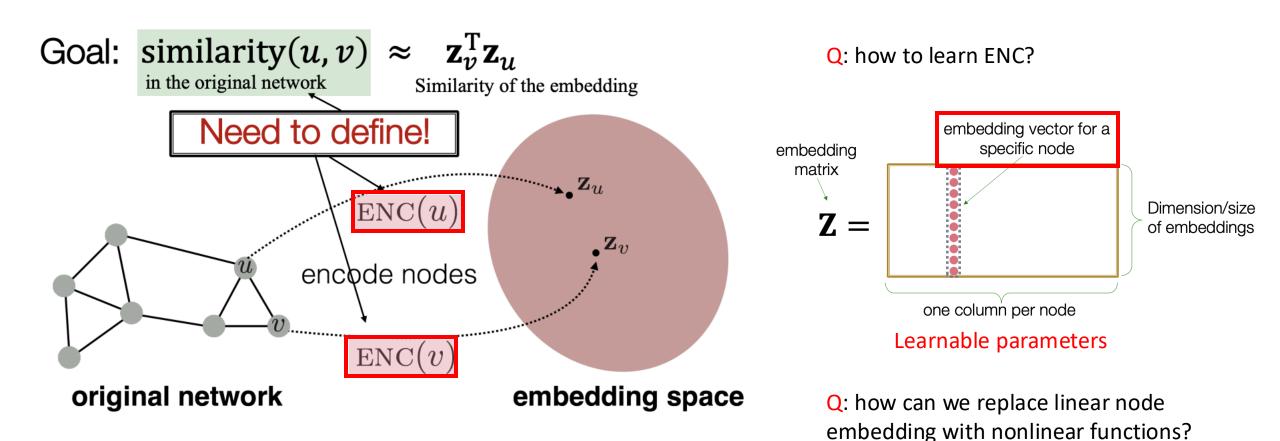
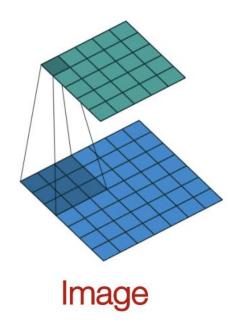
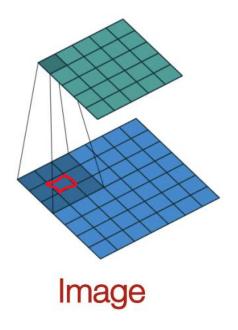
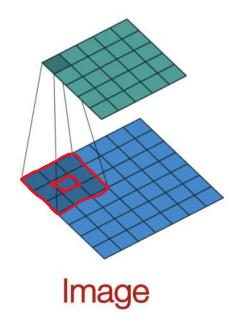
Neural Networks Design And Application

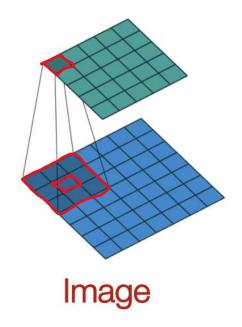
Encoder-decoder for graph data



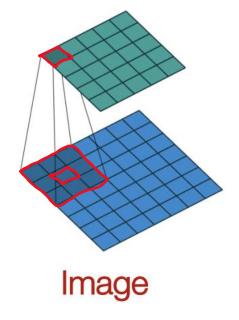




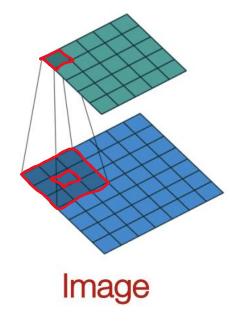


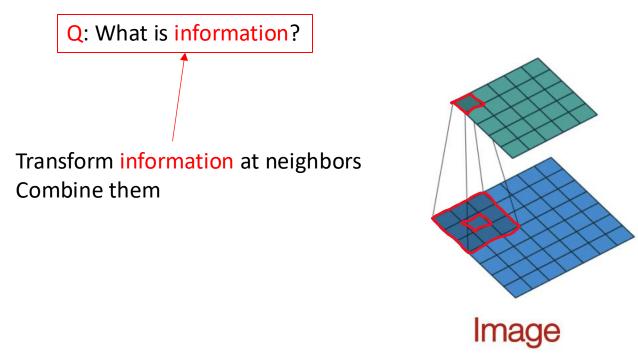


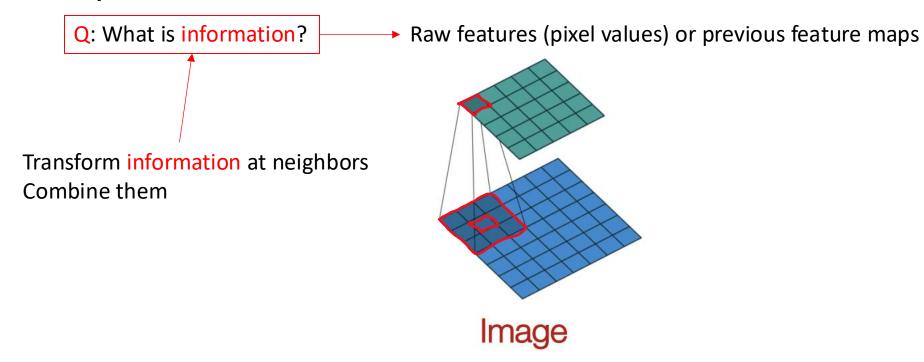
Transform information at neighbors

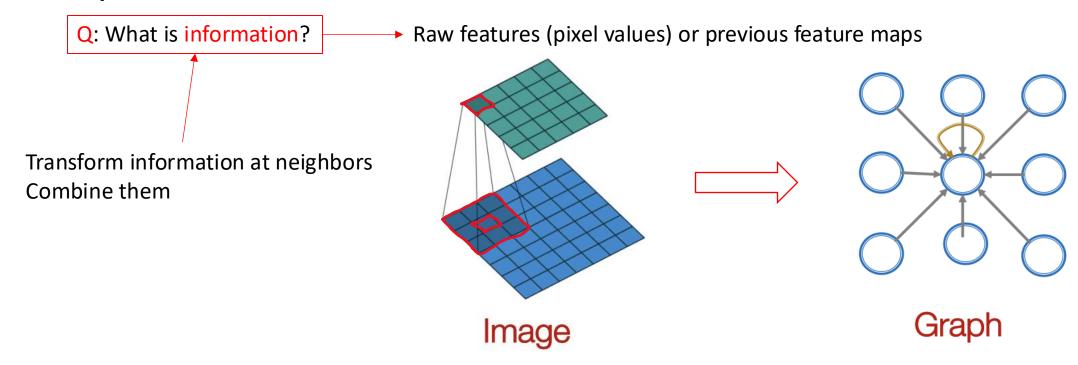


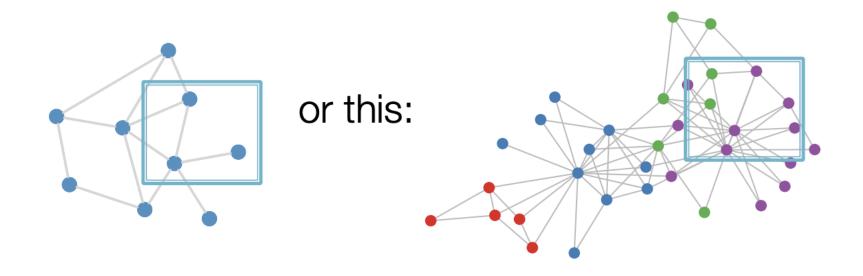
Transform information at neighbors Combine them

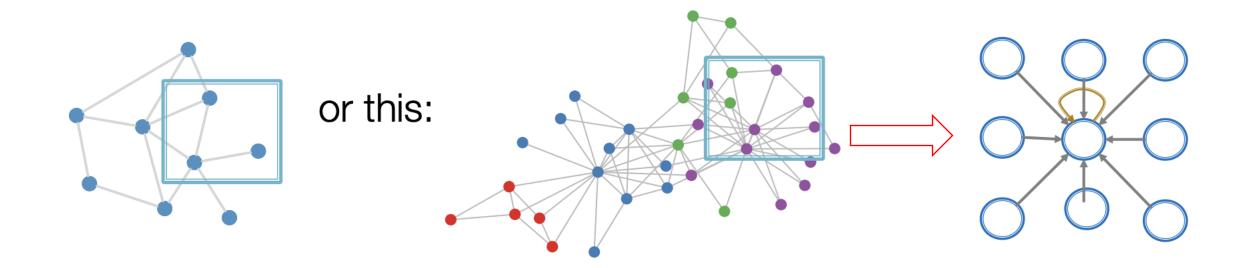


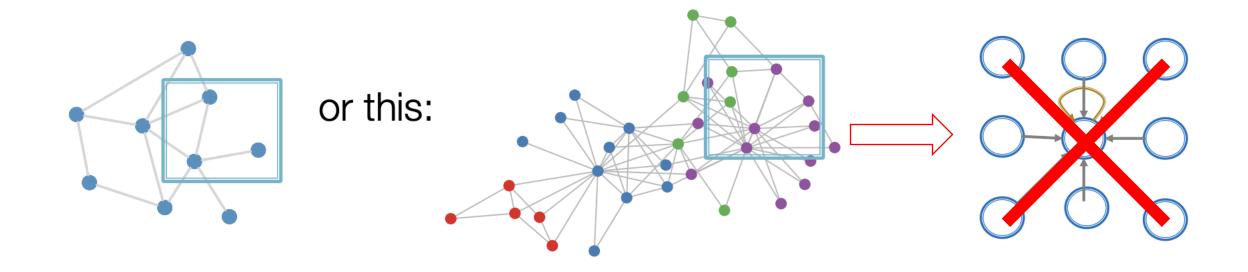




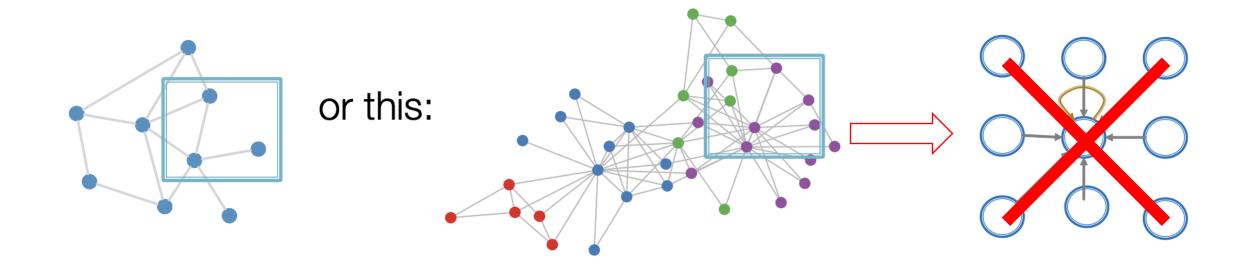








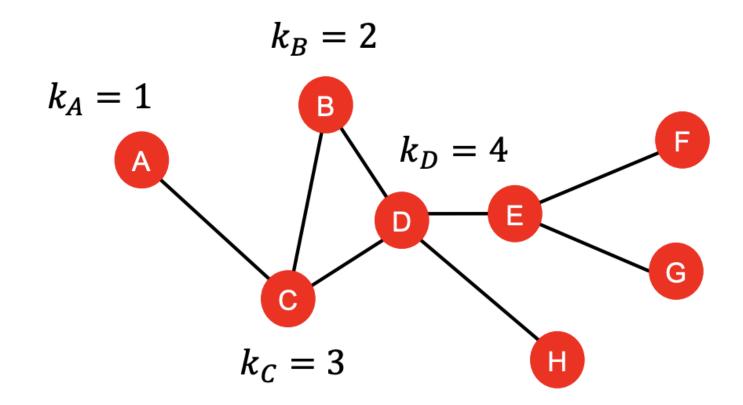
Q: can we extend similar operation to general graph?



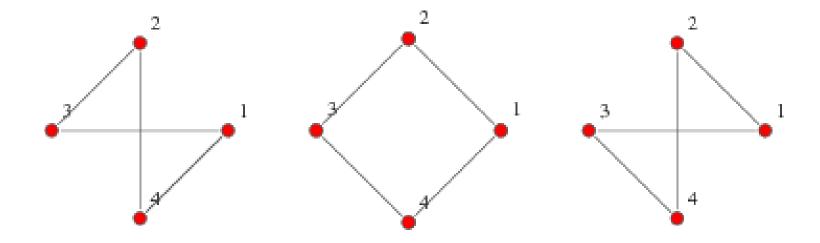
Q: can we extend similar operation to general graph?

Key: aggregate information from neighbors

Node degree



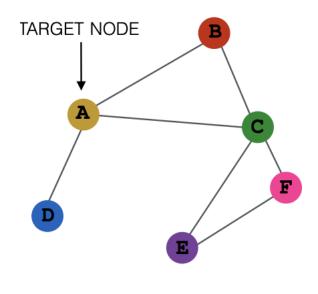
Adjacency matrix



$$\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{pmatrix}$$

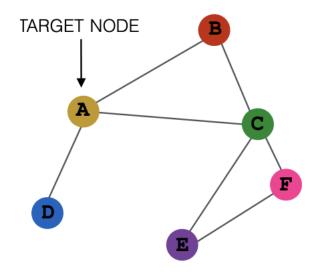
$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix}$$



INPUT GRAPH

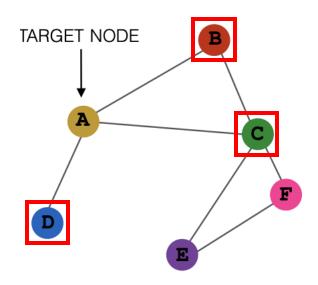
Nearest neighbors of A?



INPUT GRAPH

Nearest neighbors of A:

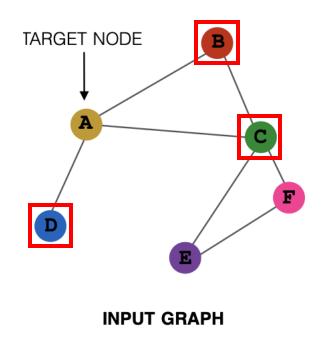
B, C, D

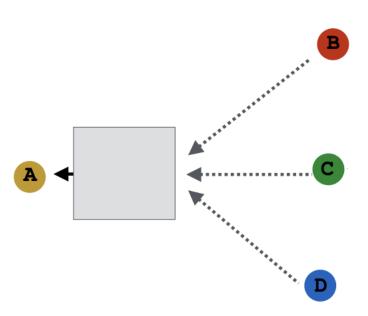


INPUT GRAPH

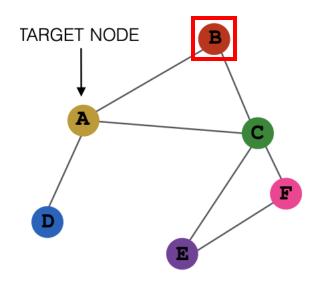
Nearest neighbors of A:

B, C, D



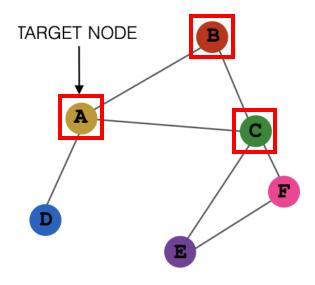


Nearest neighbors of B?



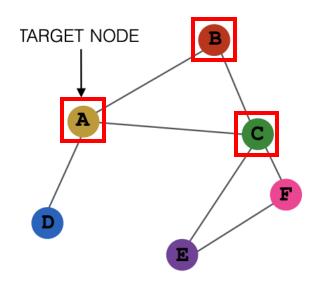
INPUT GRAPH

Nearest neighbors of B: A, C

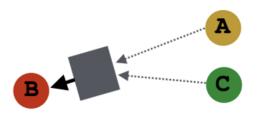


INPUT GRAPH

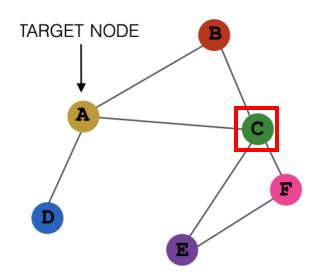
Nearest neighbors of B: A, C



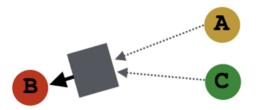
INPUT GRAPH



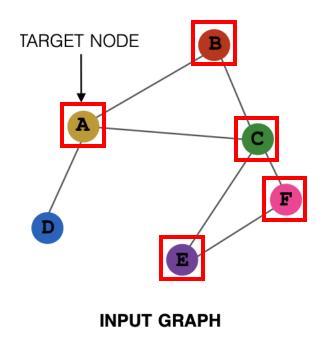
Nearest neighbors of C?

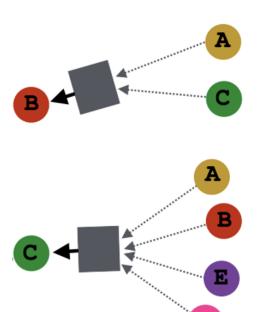


INPUT GRAPH

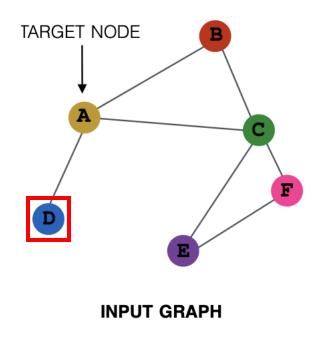


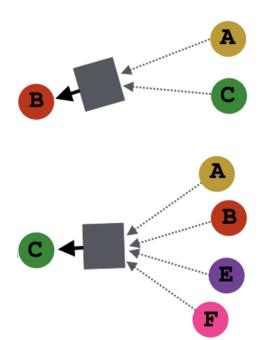
Nearest neighbors of C: A, B, E, F



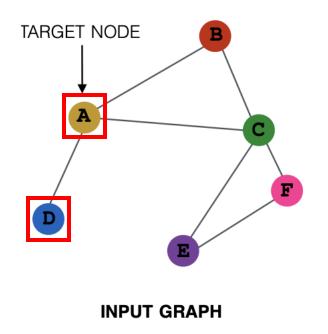


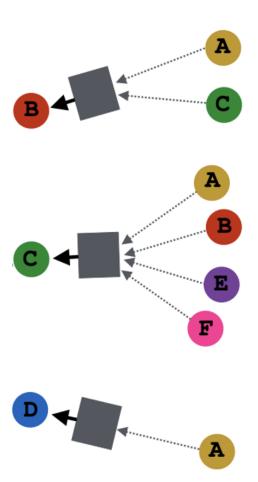
Nearest neighbors of D?





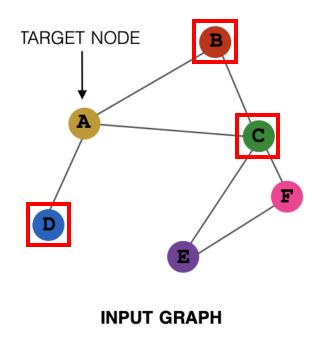
Nearest neighbors of D: A

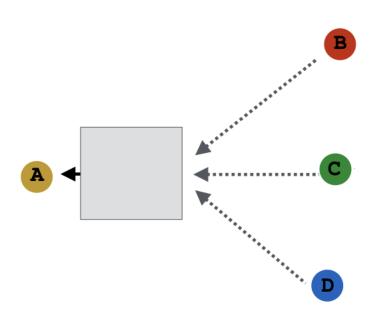




Nearest neighbors of A:

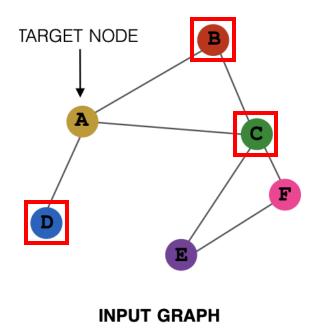
B, C, D

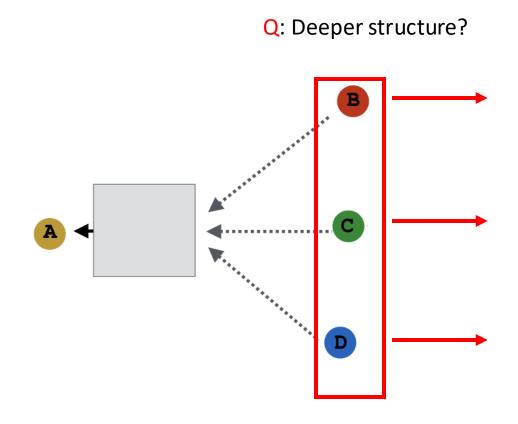


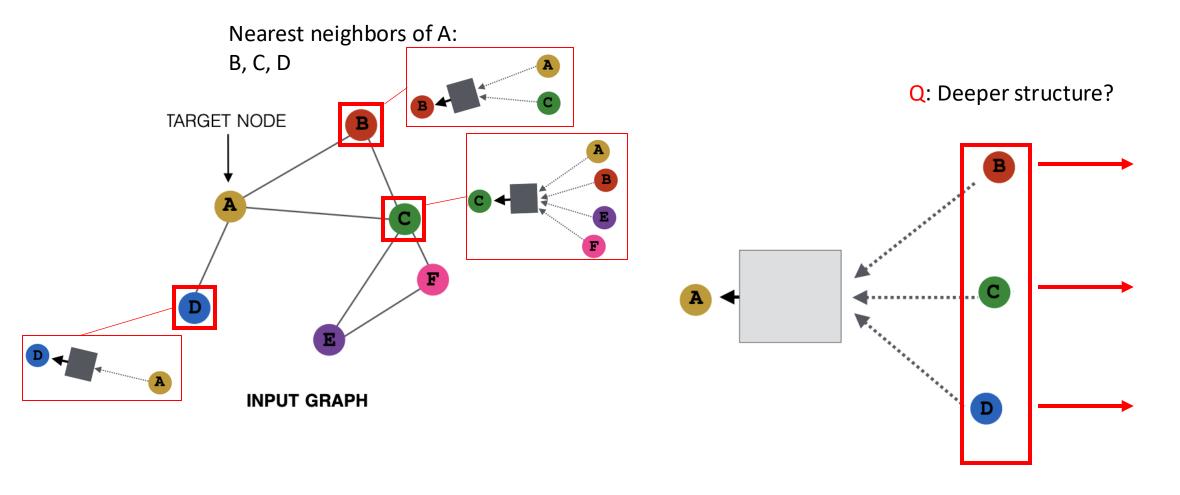


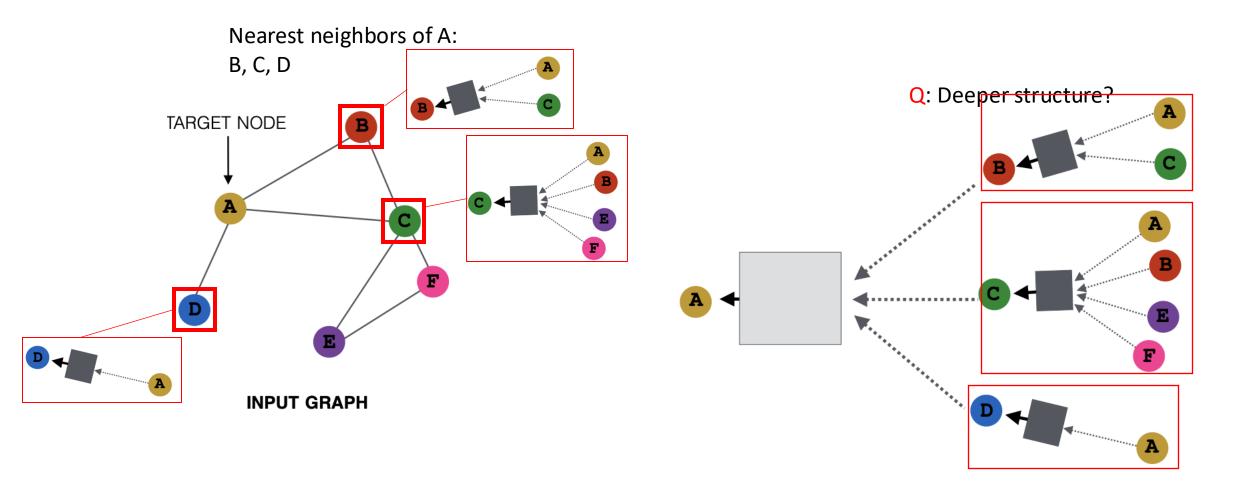
Nearest neighbors of A:

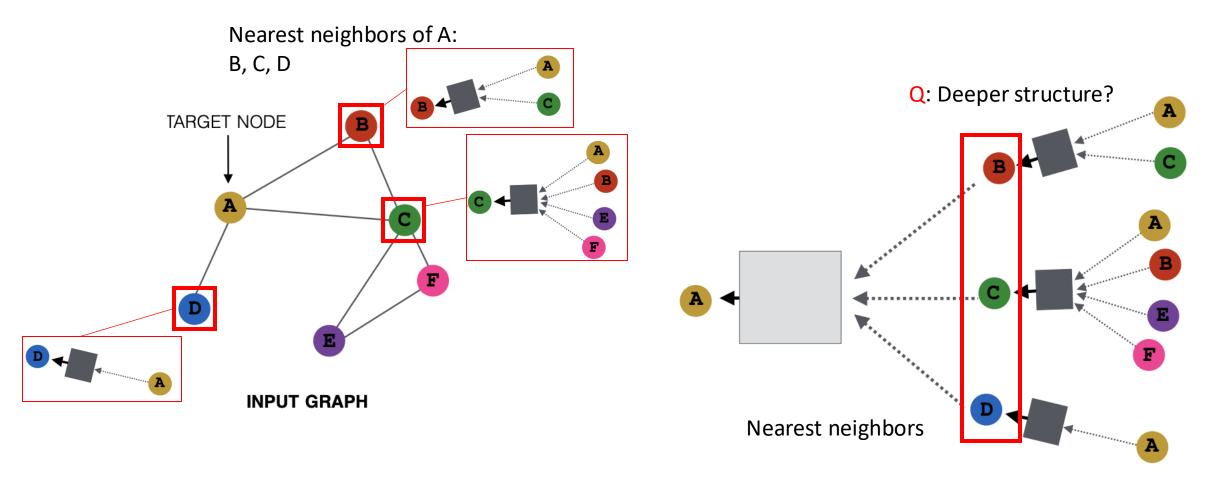
B, C, D

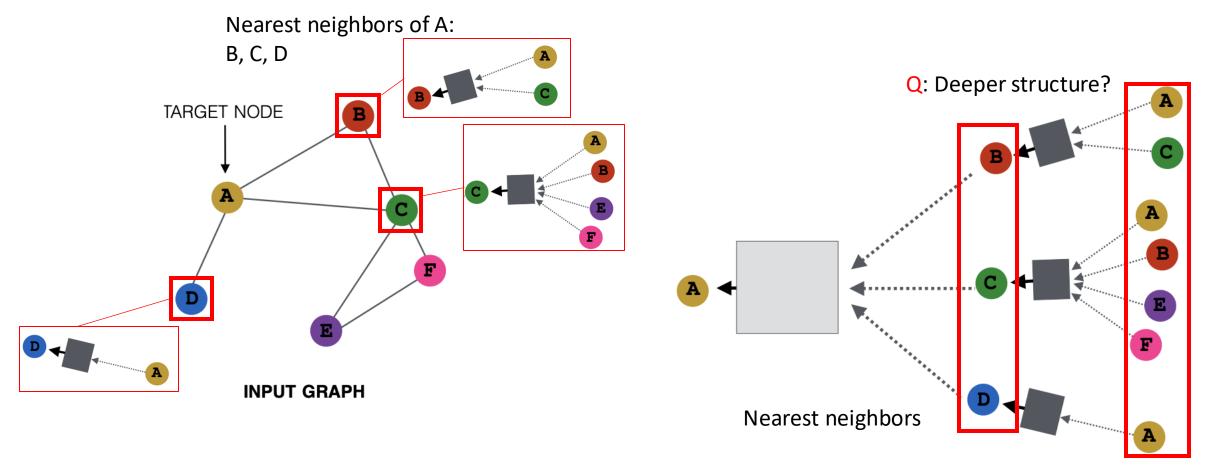


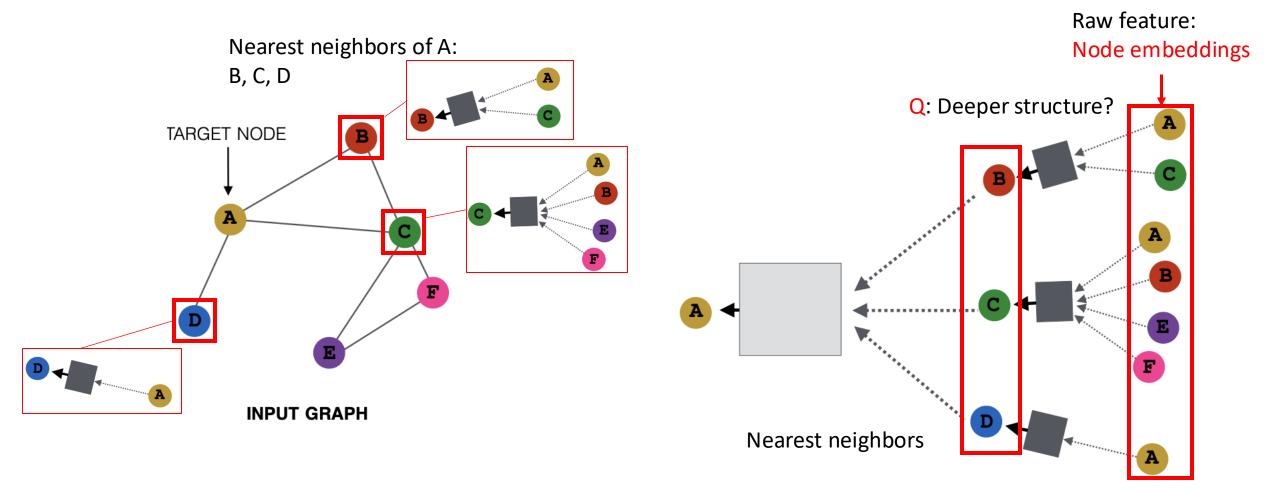






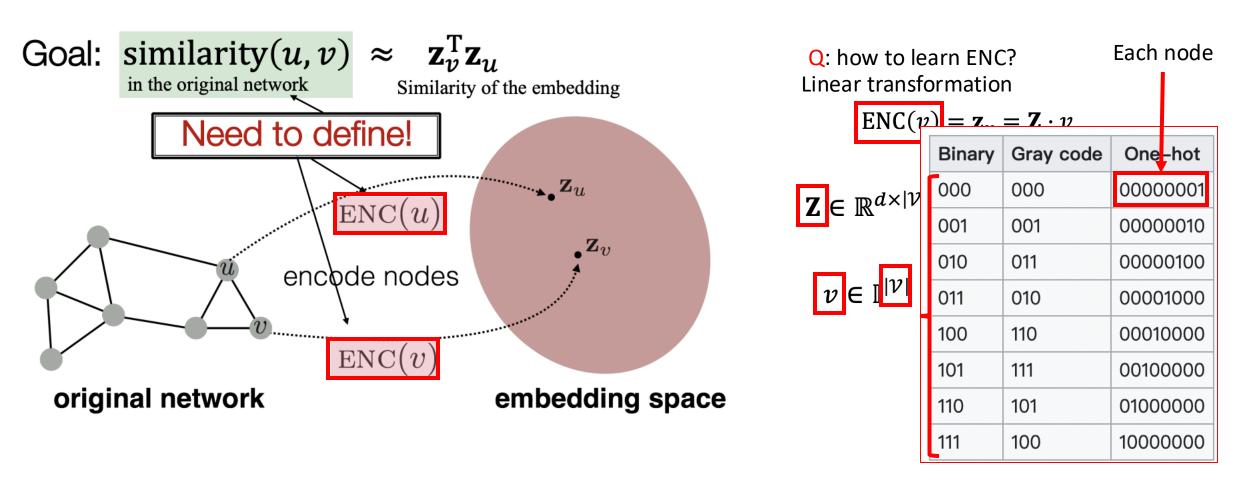






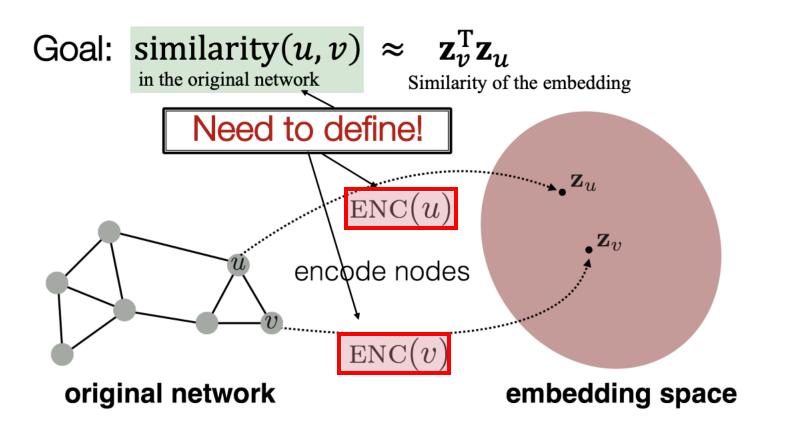
Two hops away

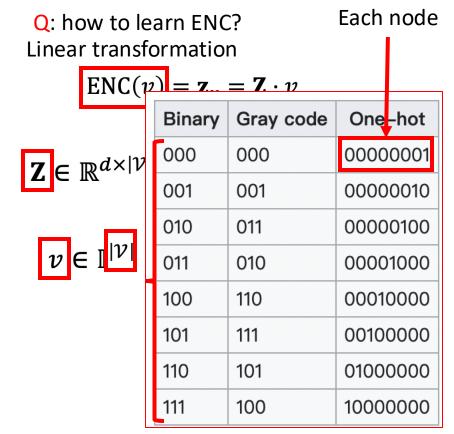
Encoder-decoder for graph data



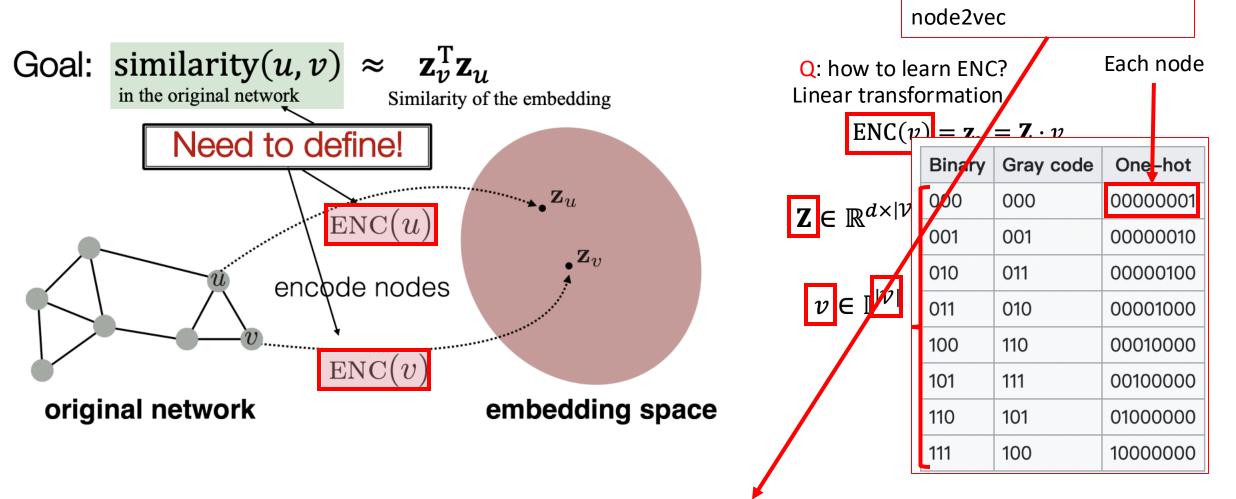
Encoder-decoder for graph data

Other embedding methods: random walk embedding node2vec



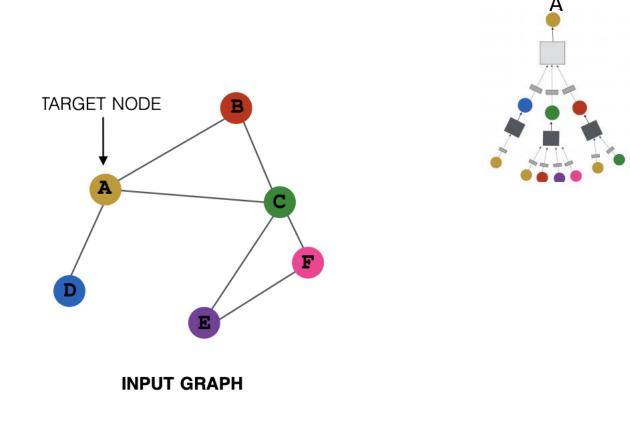


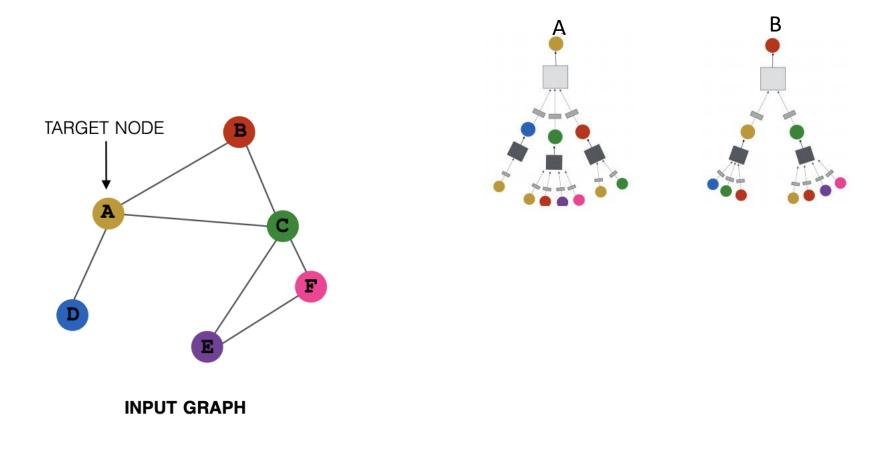
Encoder-decoder for graph data

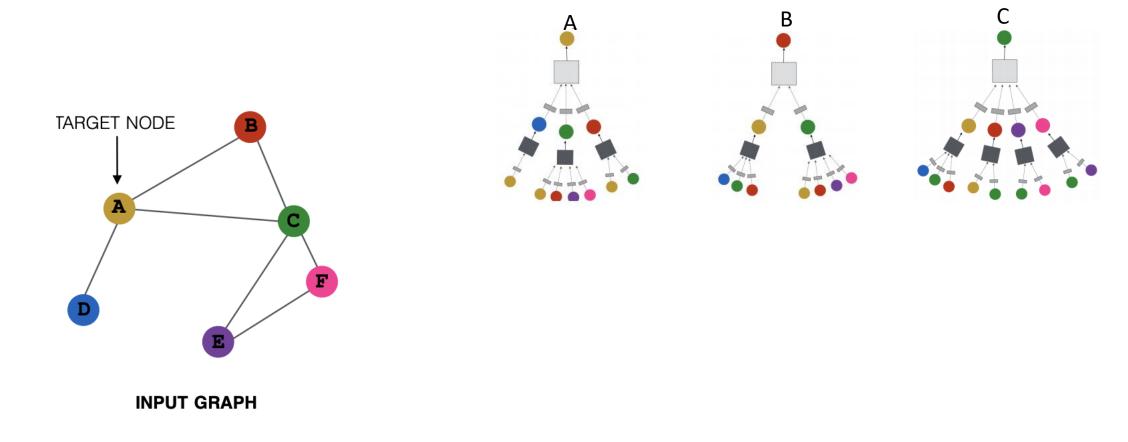


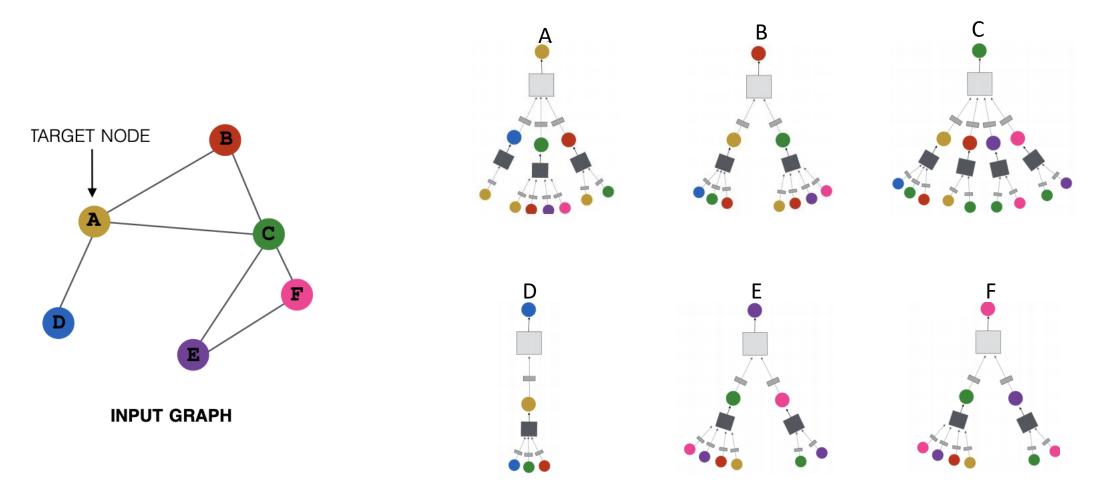
Other embedding methods:

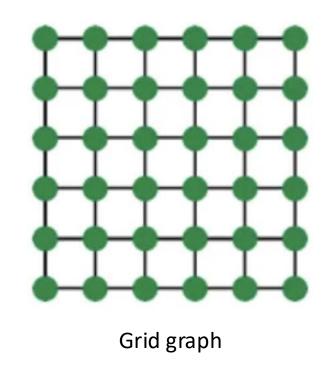
random walk embedding

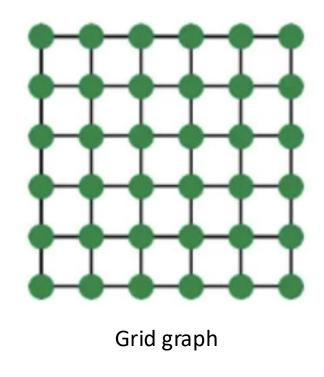


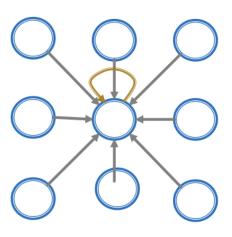




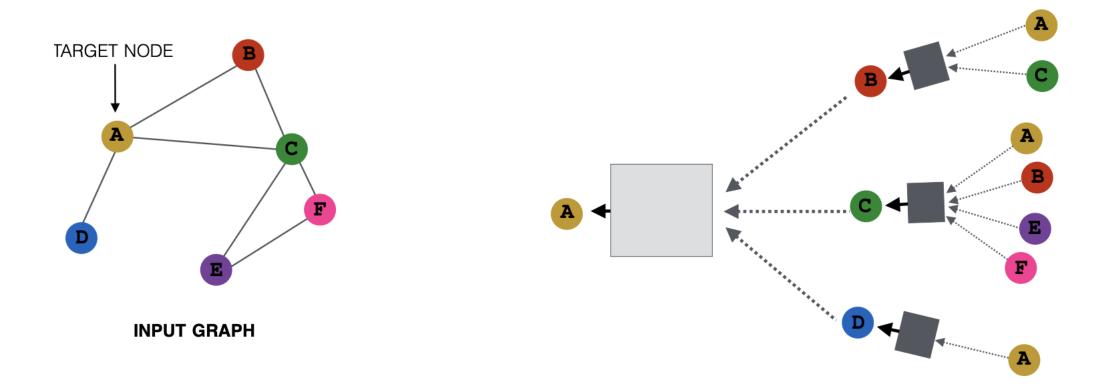


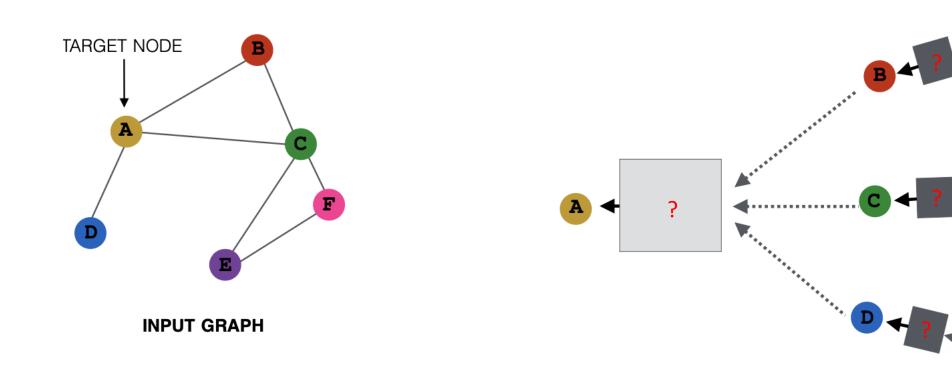


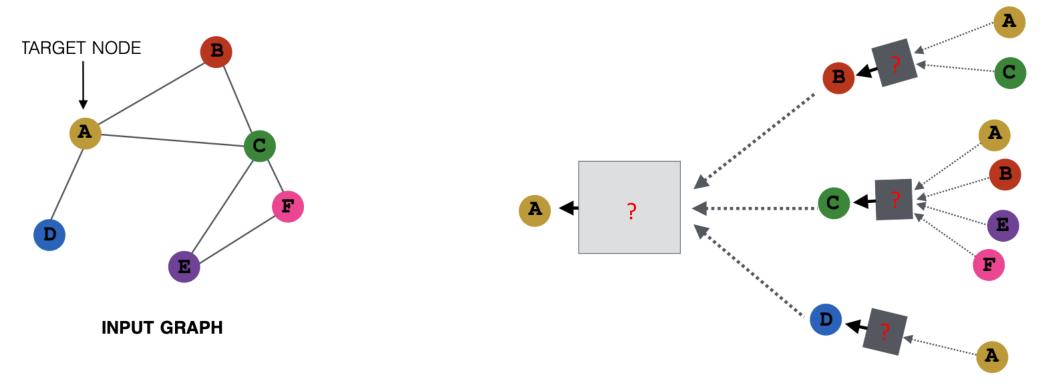




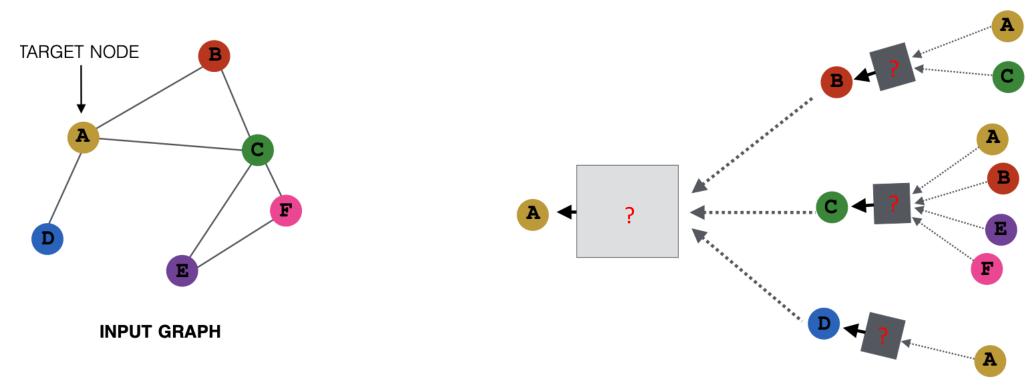
General graph



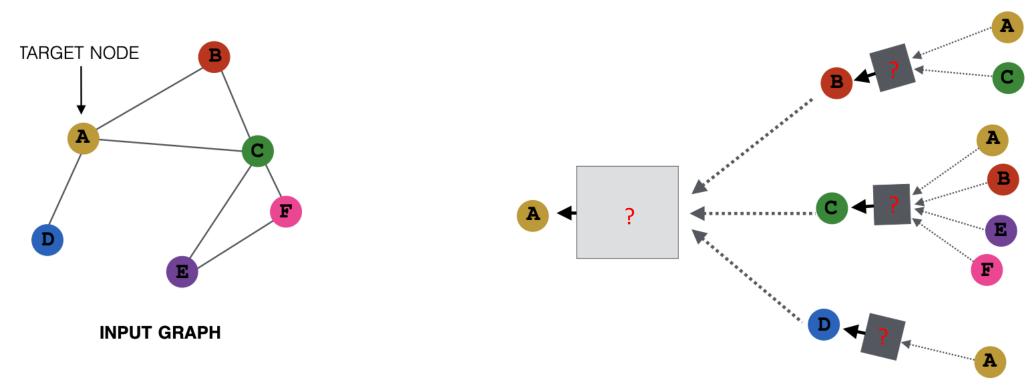




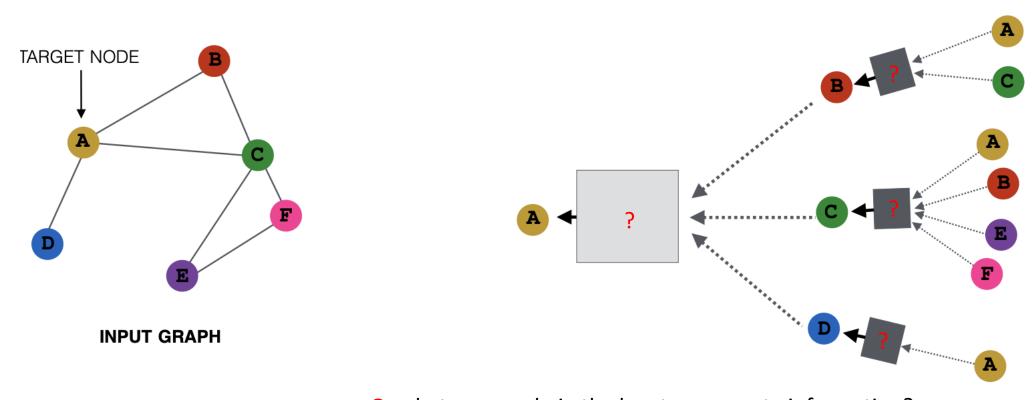
Q: what can we do in the box to aggregate information?



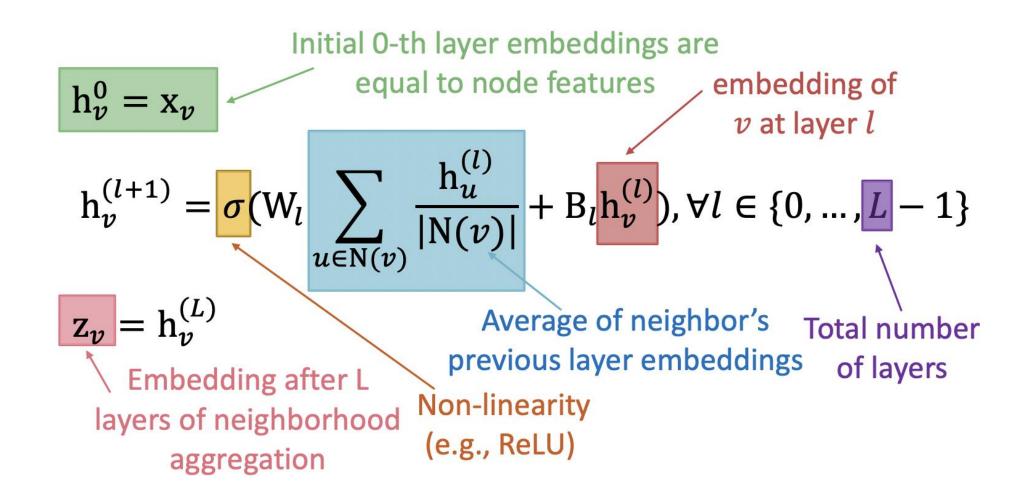
Q: what can we do in the box to aggregate information? Average/summation?

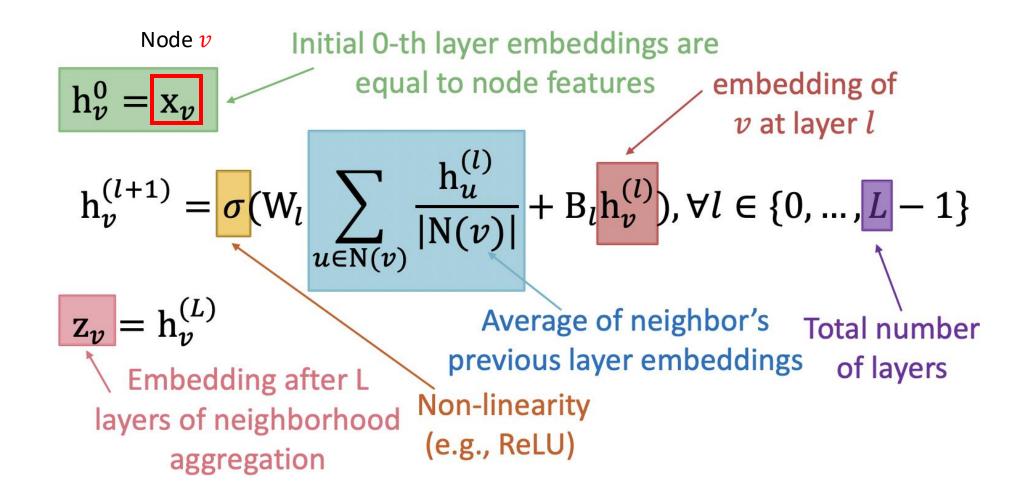


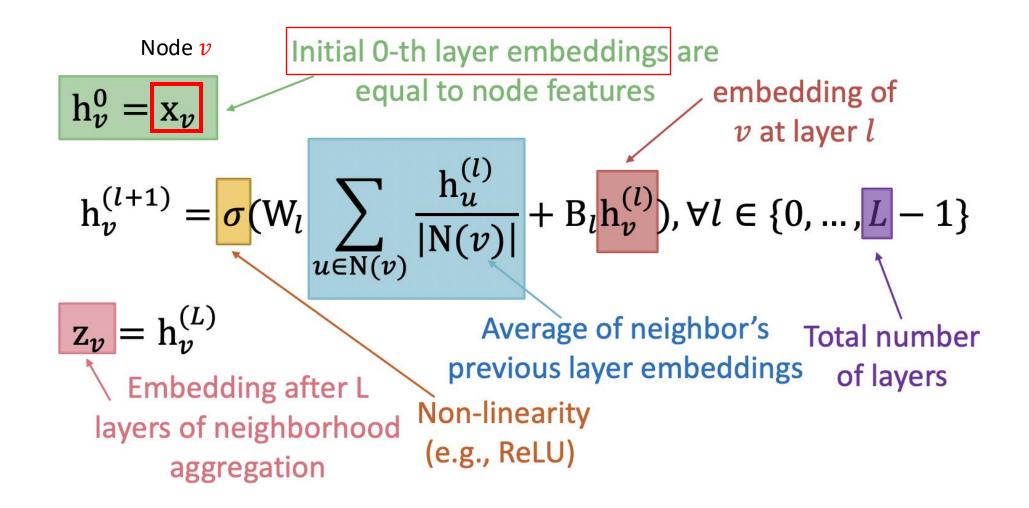
Q: what can we do in the box to aggregate information? Average/summation → linear model

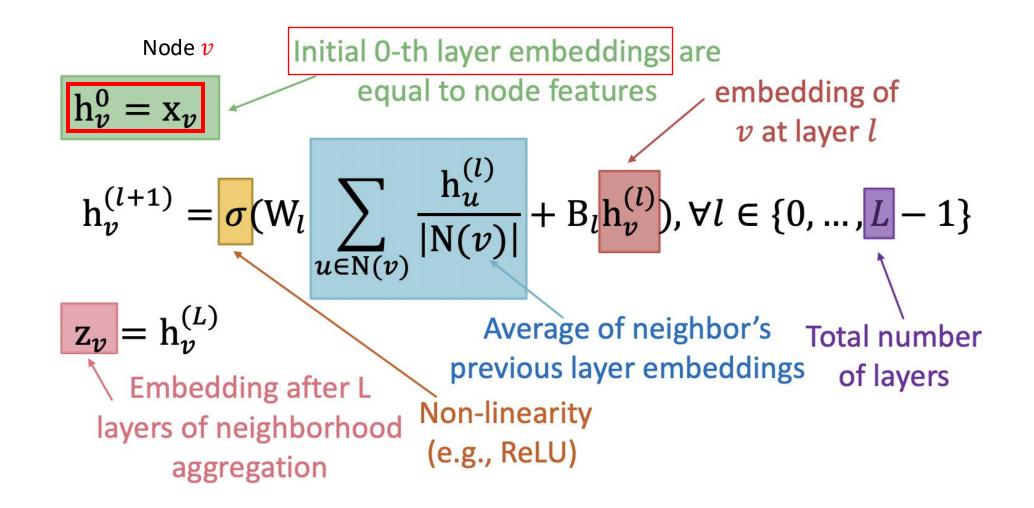


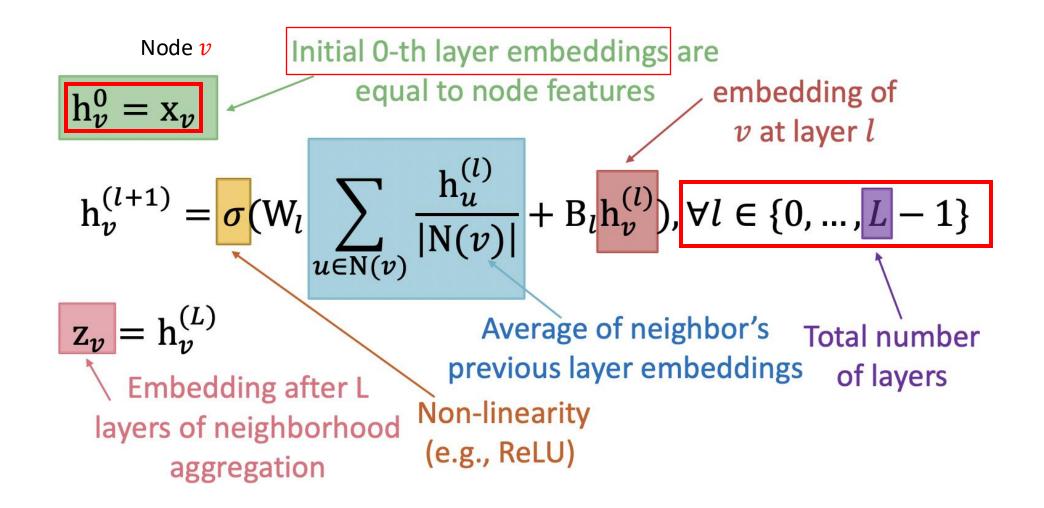
Q: what can we do in the box to aggregate information? Average/summation → linear model A neural network nonlinear layer?

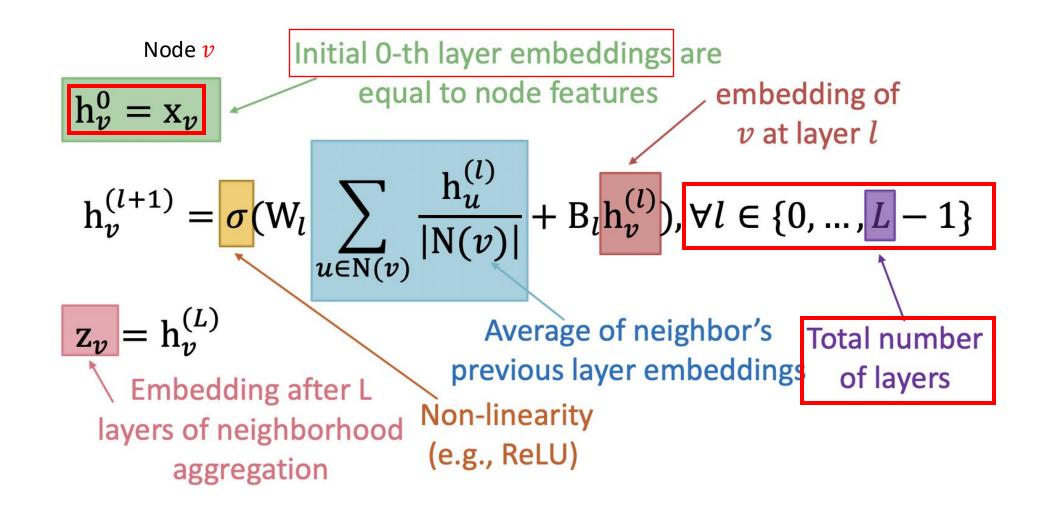


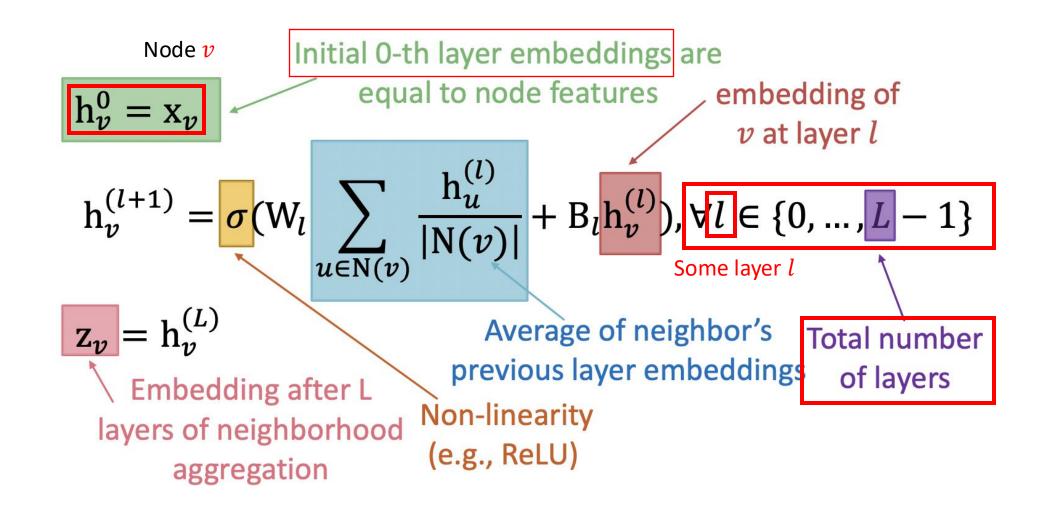


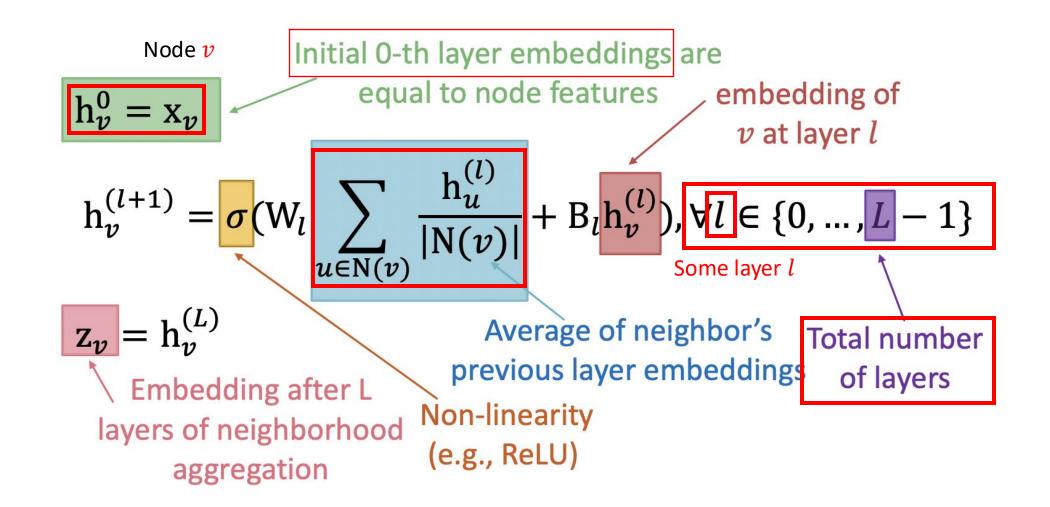


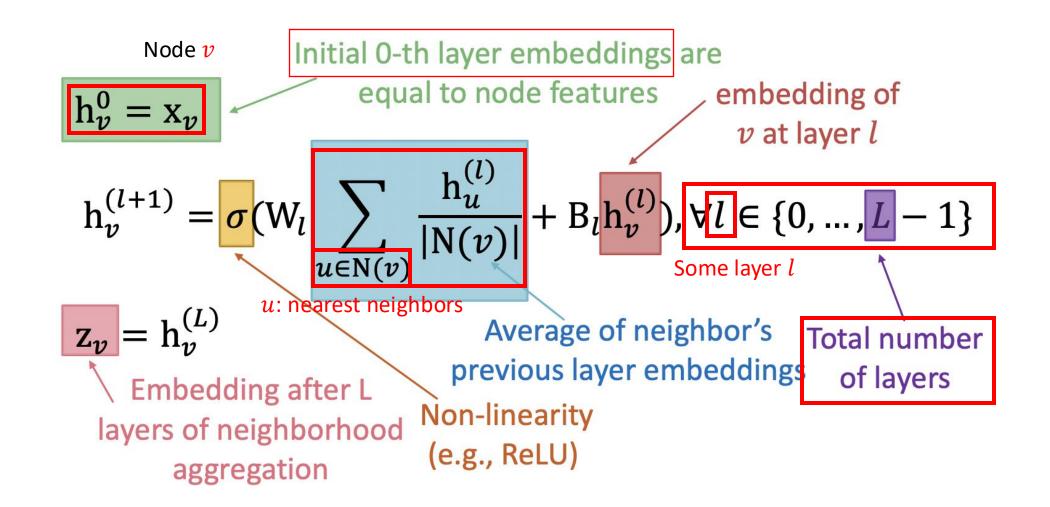


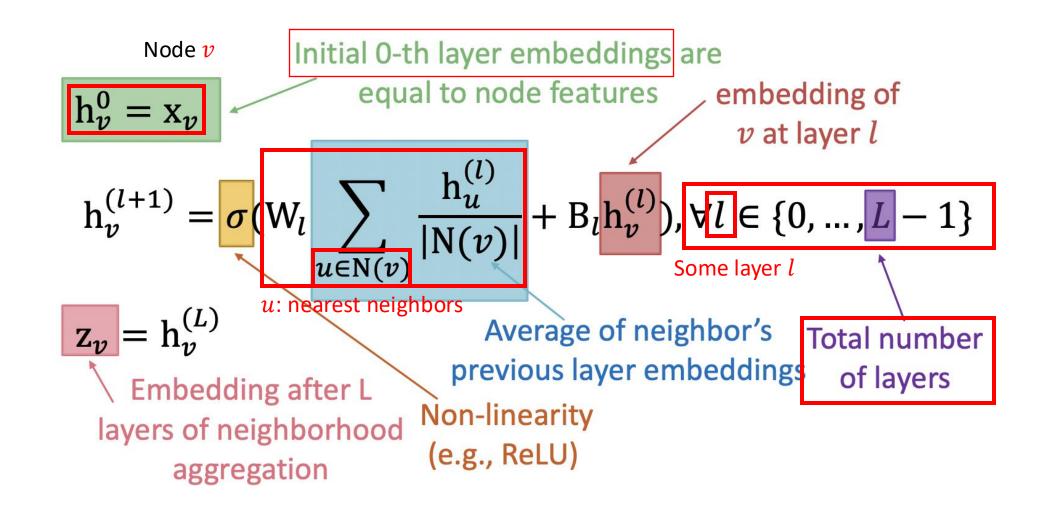


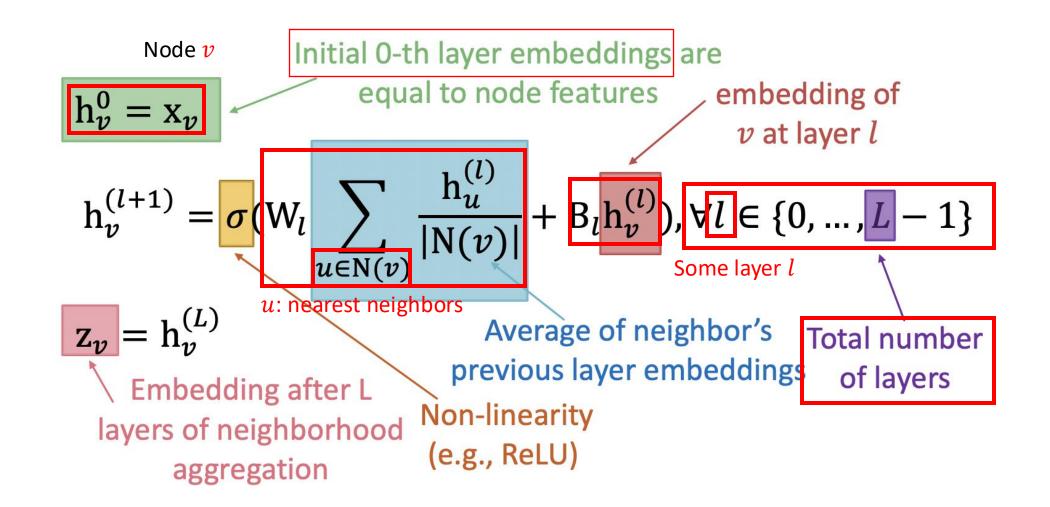


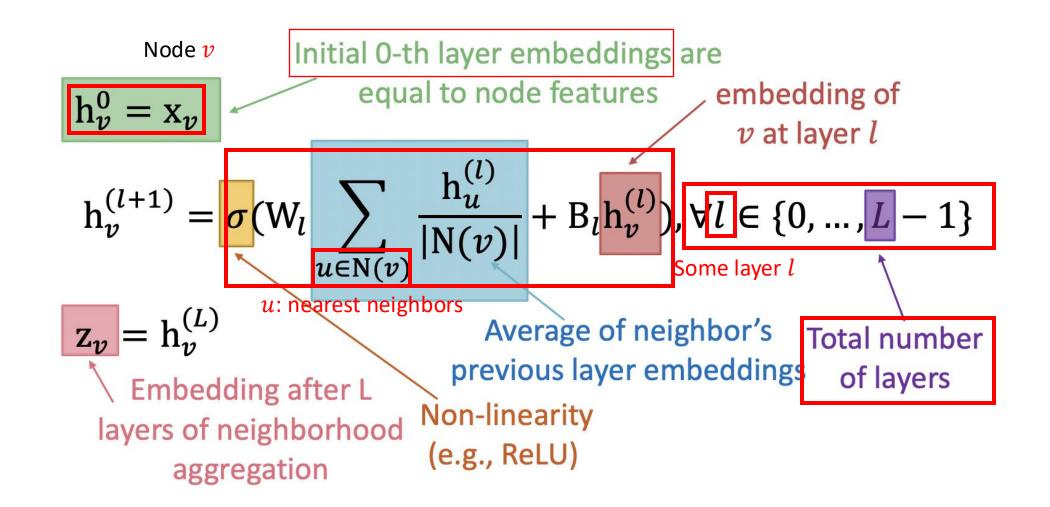


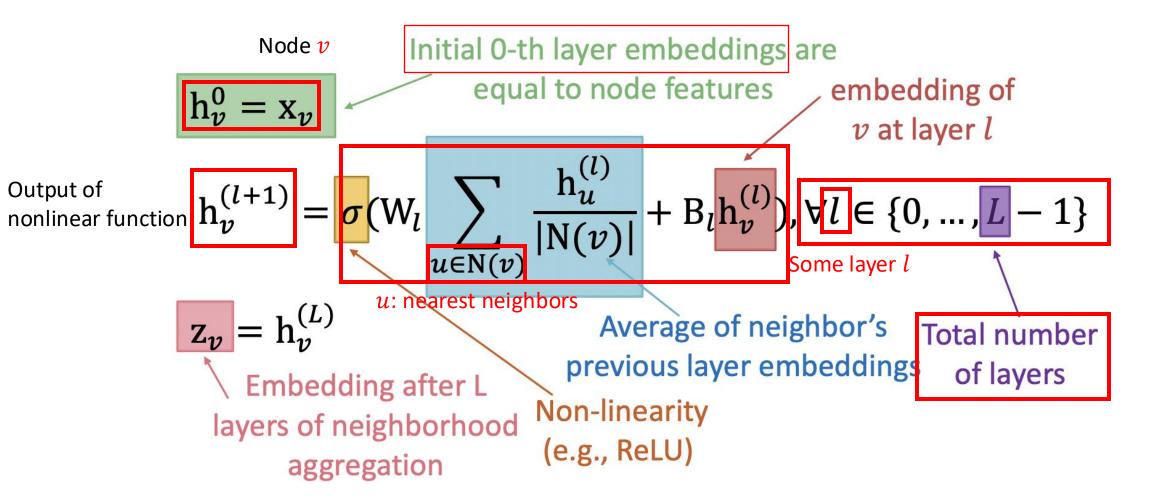


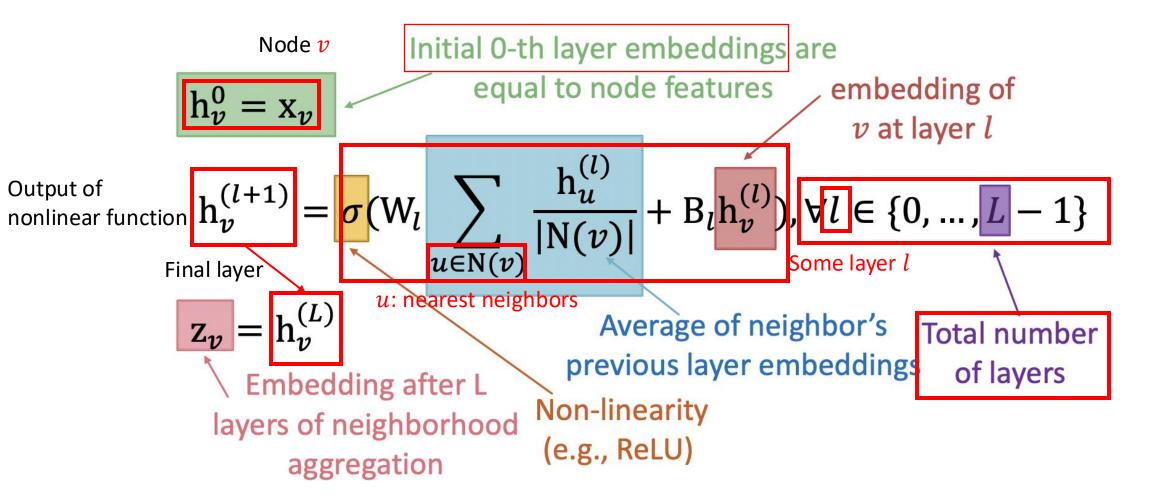


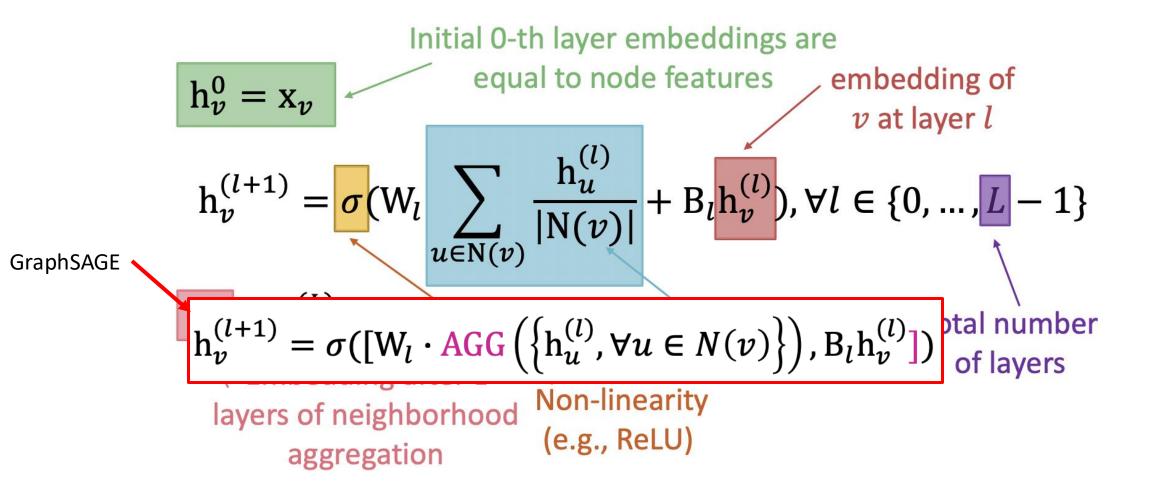


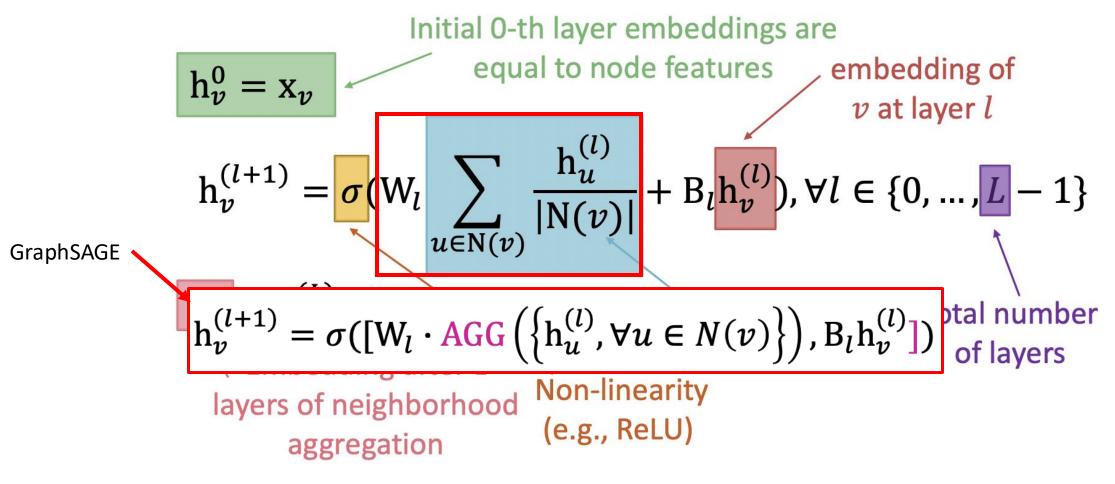




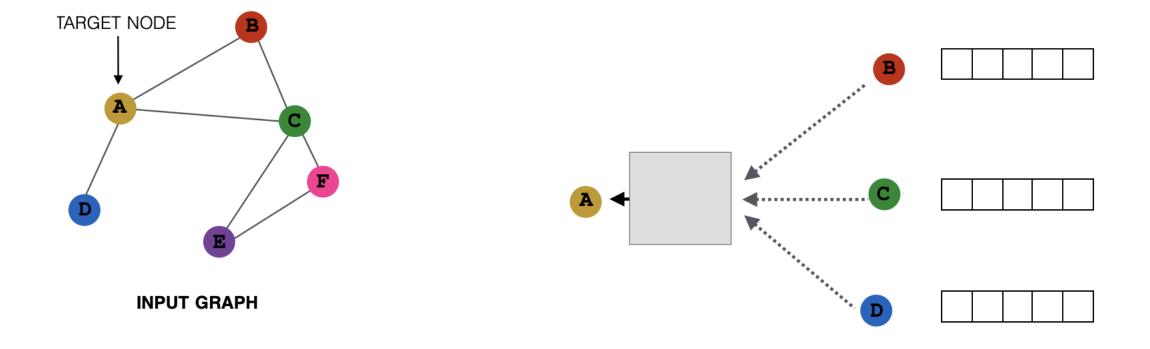


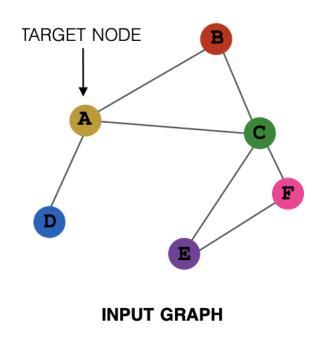




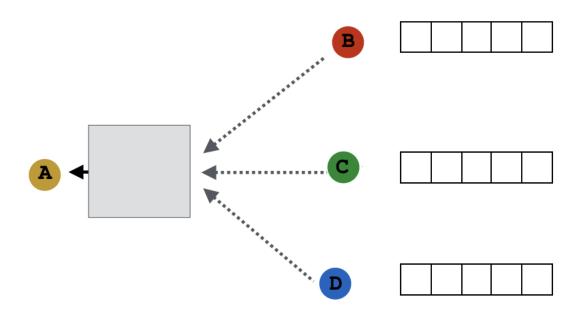


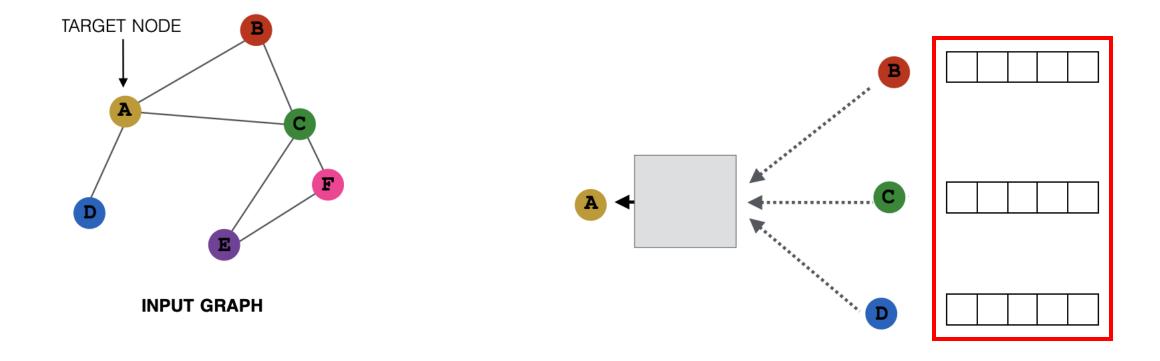
Q: why GraphSAGE can be more general?

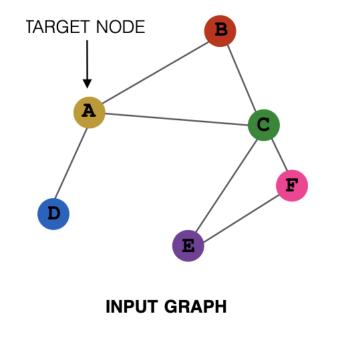


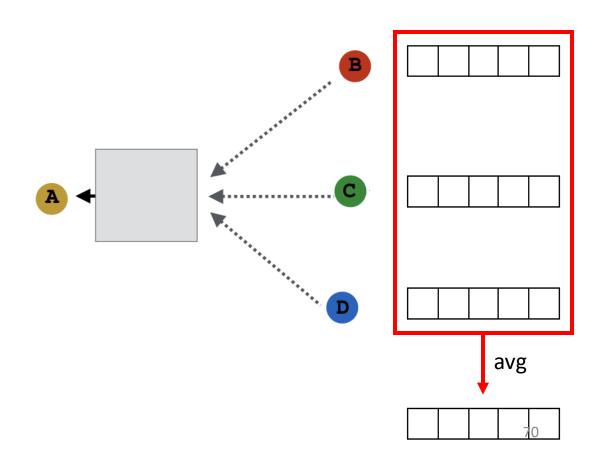


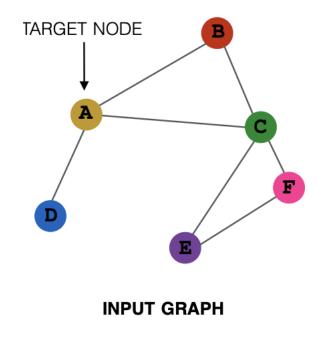
Suppose: we have 5d node features

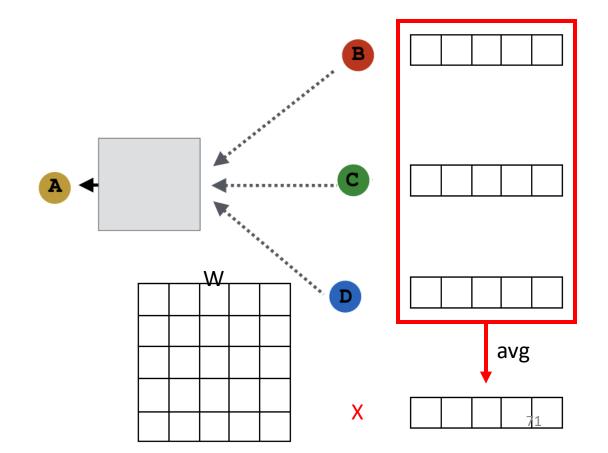


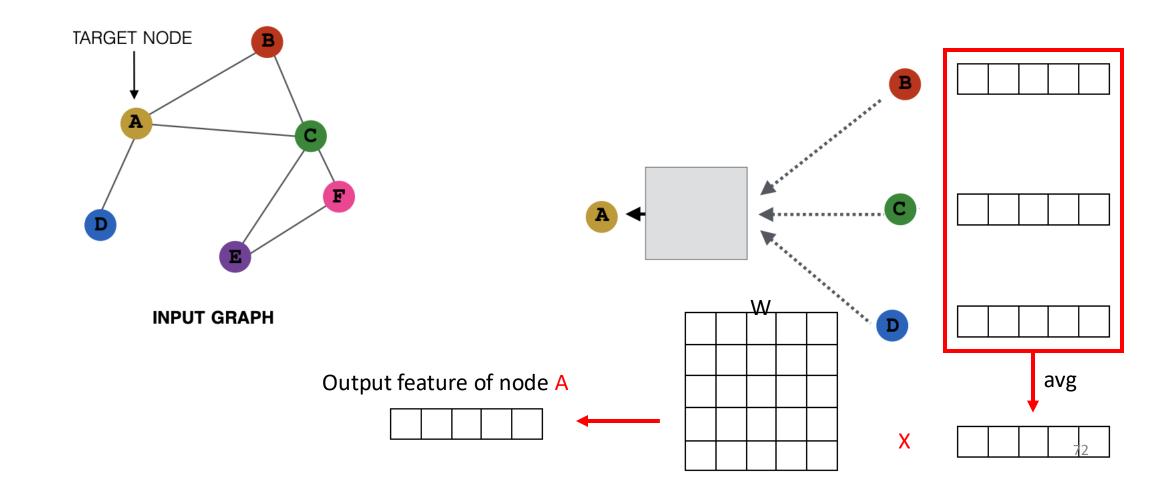


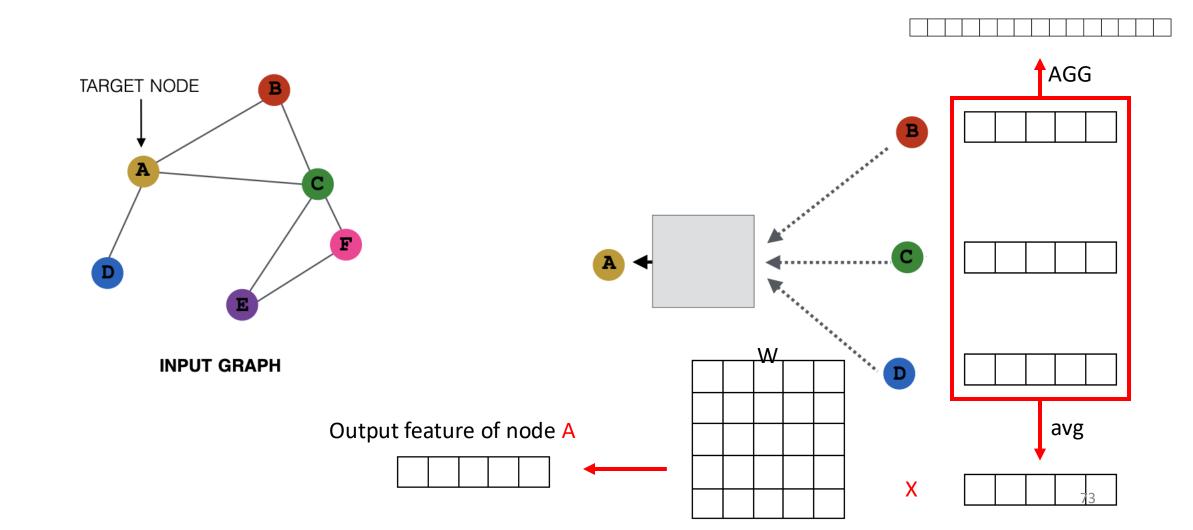


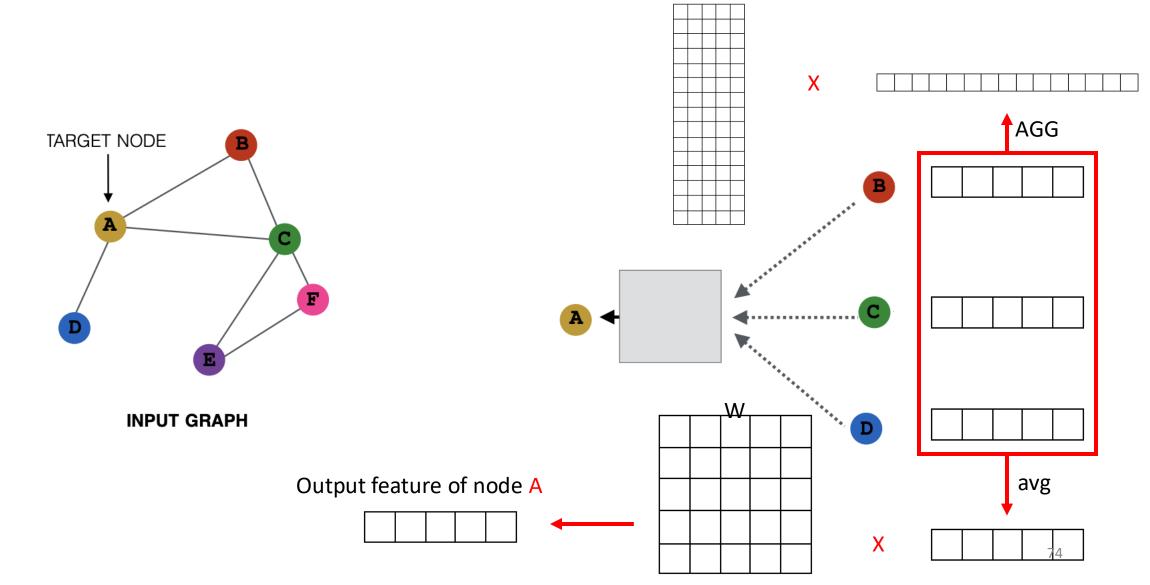


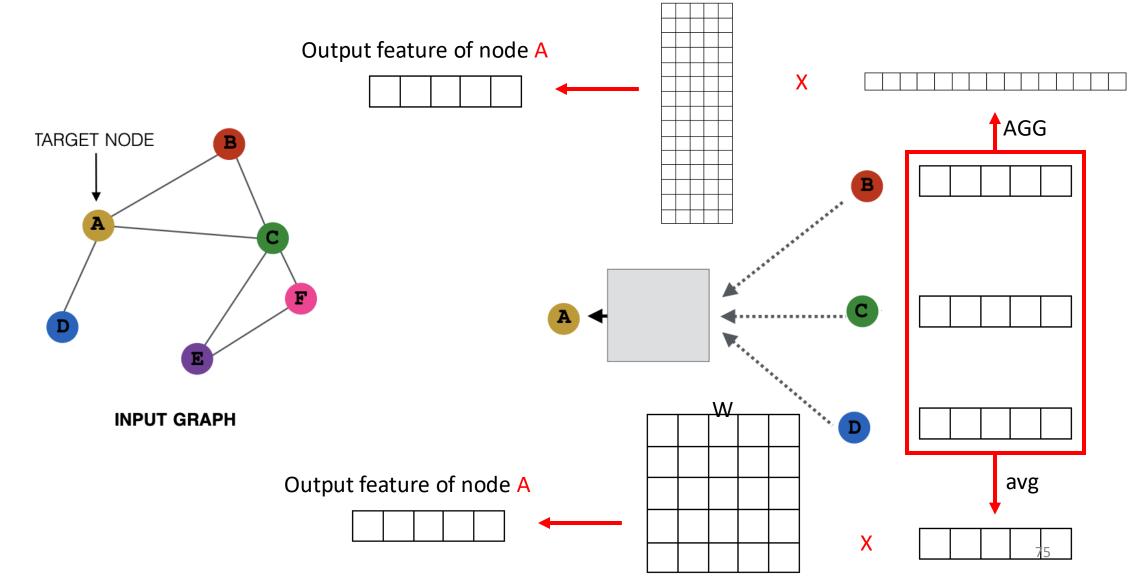


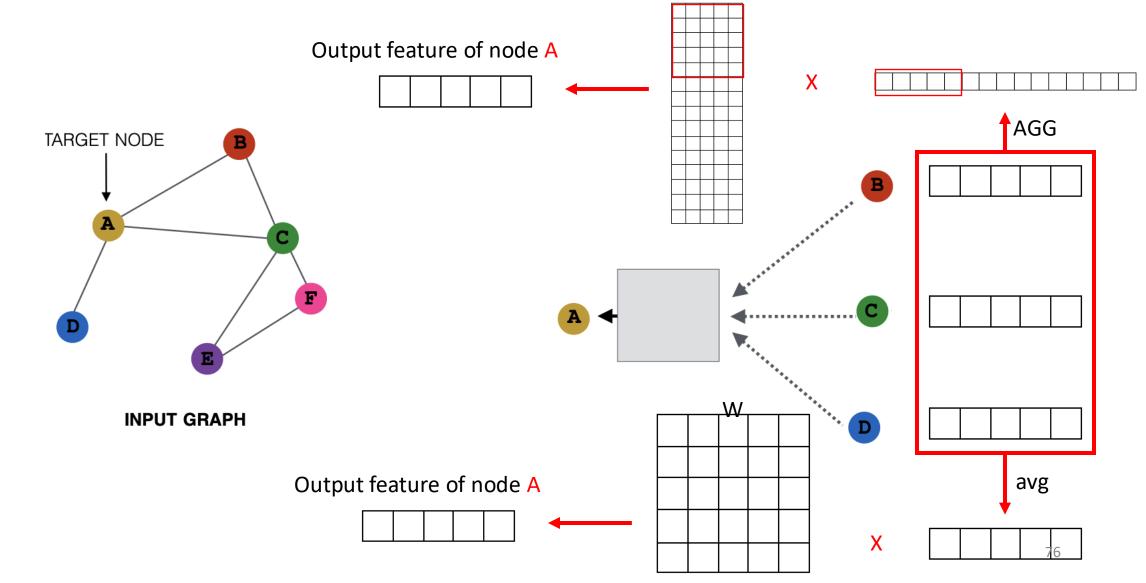


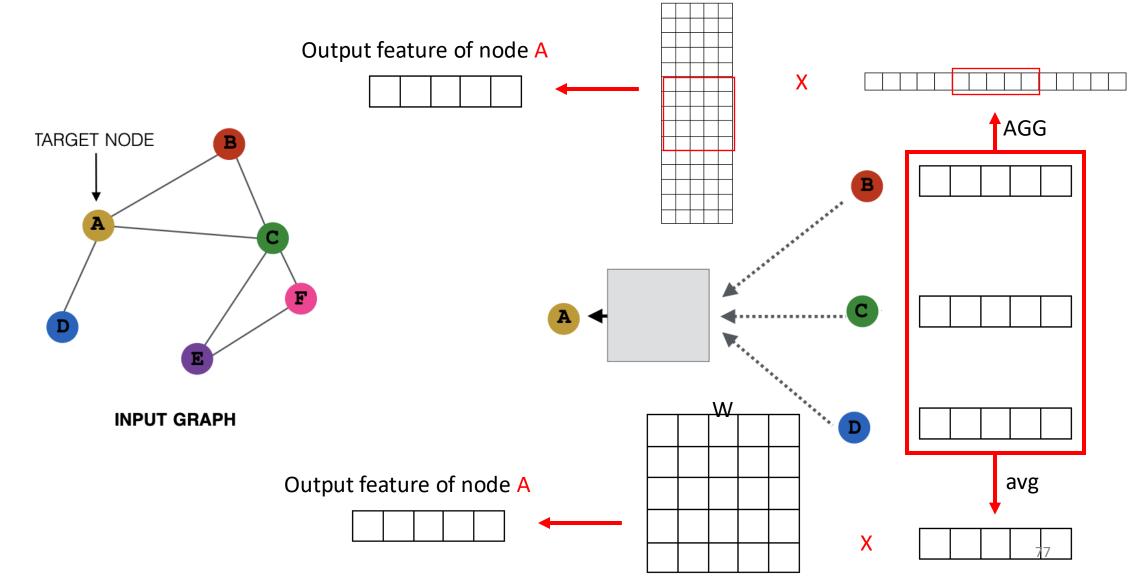


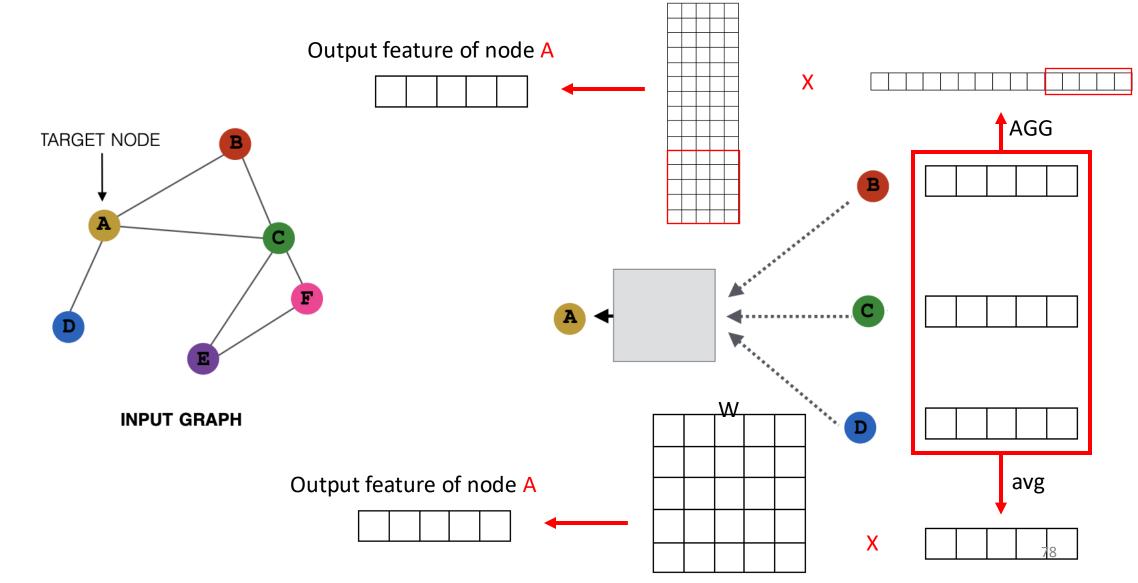


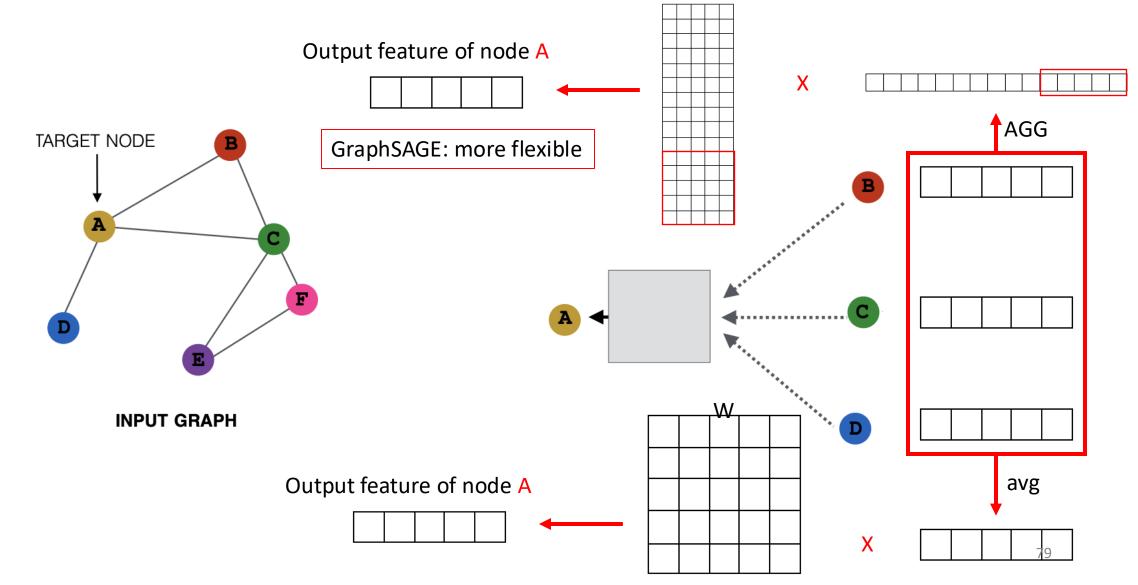




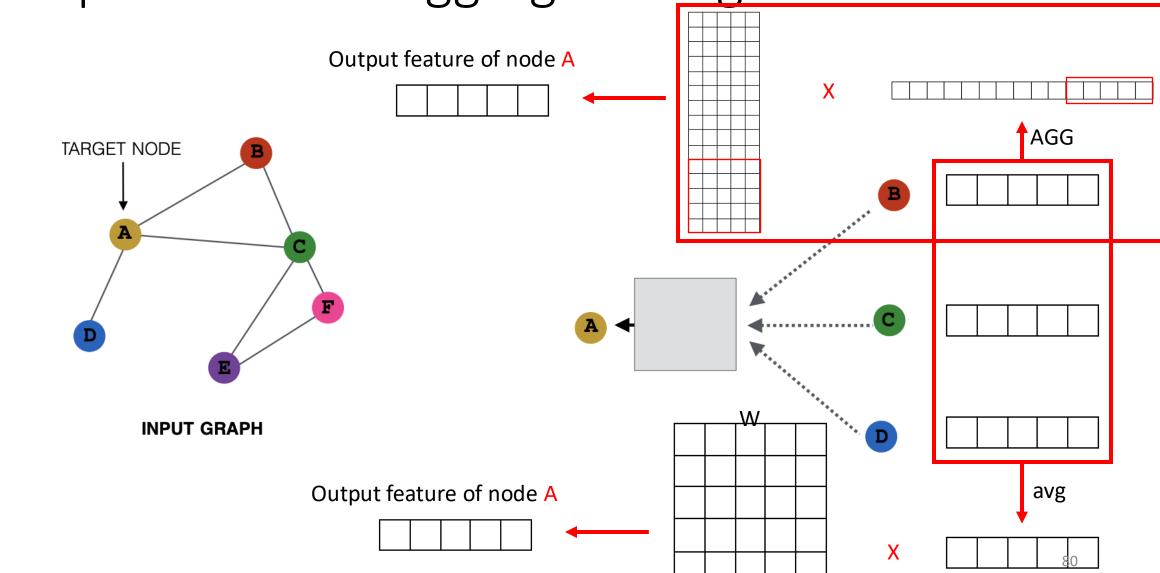








Graph networks: aggregate neighbors Linear model



Graph networks: aggregate neighbors Linear model

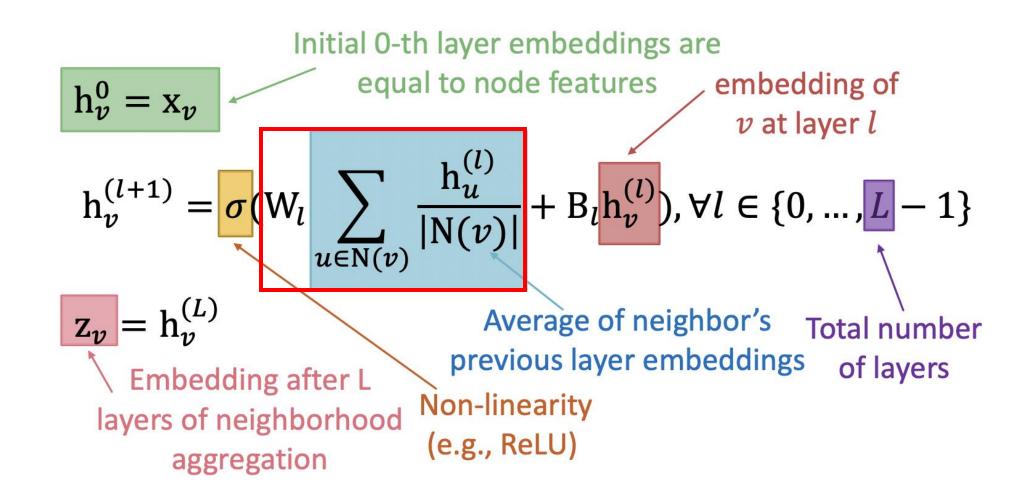
Output feature of node A X AGG TARGET NODE Q: can we use nonlinear model? **INPUT GRAPH** Output feature of node A avg X

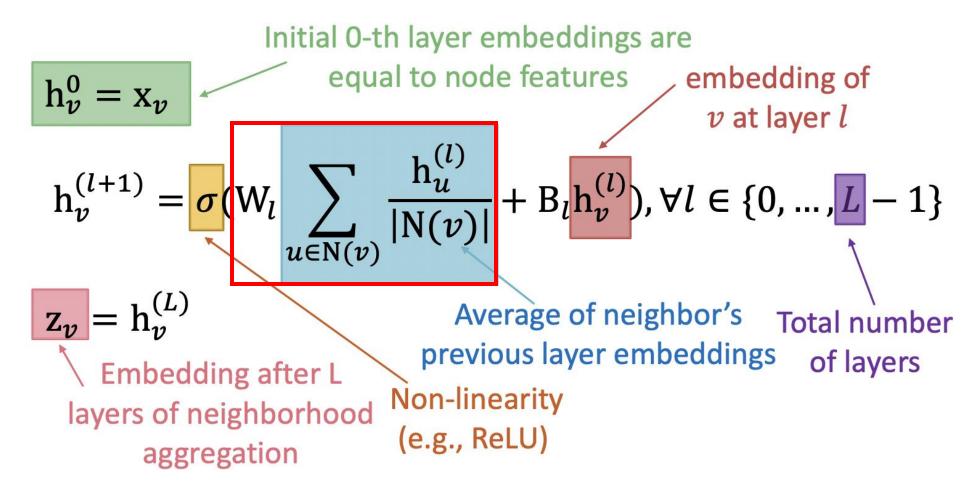
Graph networks: aggregate neighbors Linear model Output feature of node A AGG TARGET NODE Q: can we use nonlinear model? **Pool:** Transform neighbor vectors and apply symmetric vector function Element-wise mean/max $AGG = \gamma(\{MLP(h_u^{(l)}), \forall u \in N(v)\})$ **INPUT GRAPH** Output feature of node A avg

X

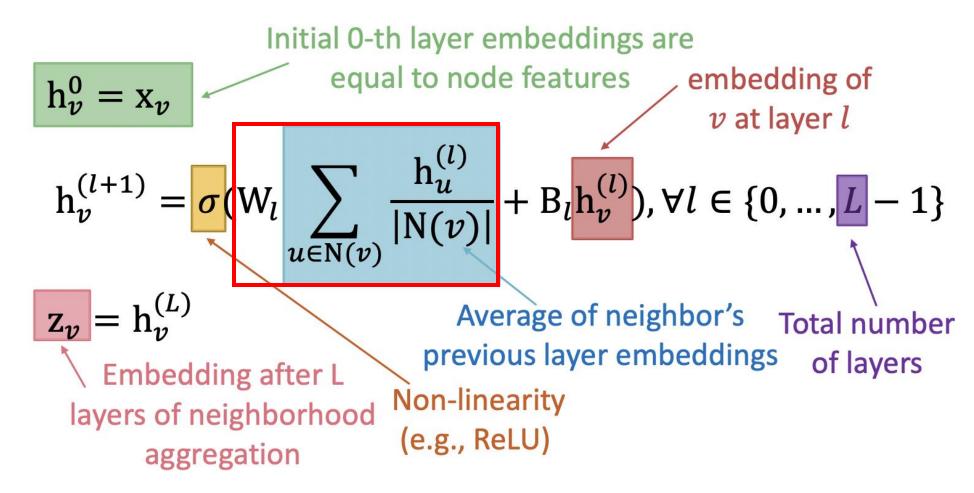
Graph networks: aggregate neighbors Linear model Output feature of node A AGG TARGET NODE Q: can we use nonlinear model? **Pool:** Transform neighbor vectors and apply symmetric vector function Element-wise mean/max $AGG = \gamma(\{MLP(h_u^{(l)}), \forall u \in N(v)\})$ **INPUT GRAPH** Output feature of node A avg

X





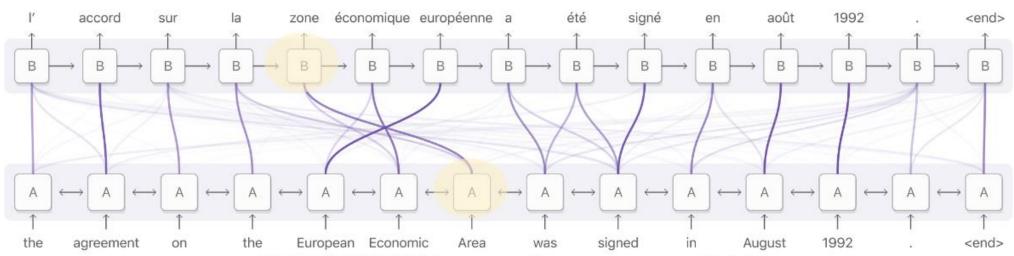
Q: can we use attention mechanism?



Q: can we use attention mechanism? ← Not all node's neighbors are equally importants

Input-output correlation

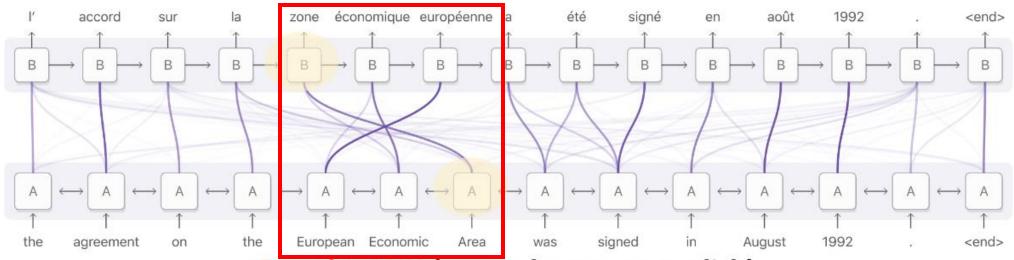
Decoder RNN (target language: French)



Encoder RNN (source language: English)

Input-output correlation

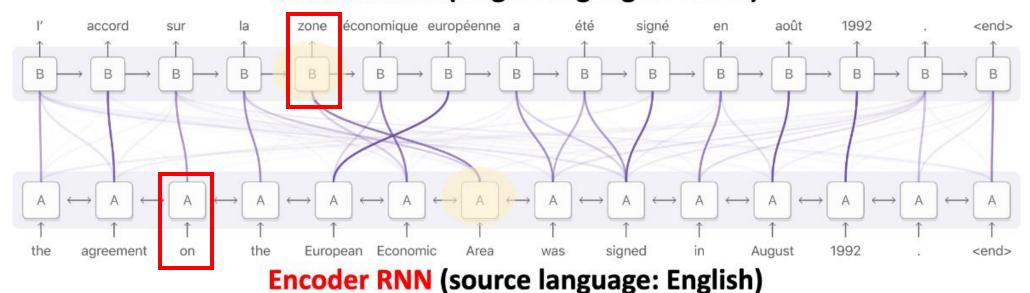
Decoder RNN (target language: French)



Encoder RNN (source language: English)

Input-output correlation

Decoder RNN (target language: French)



$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

Q: what stand for importance of a node?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights

Node degree?
$$\mathbf{h}_v^{(l)} = \sigma(\sum_{\substack{u \in N(v) \\ \text{Attention weights}}} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)})$$

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\boldsymbol{e_{vu}} = a(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\boldsymbol{h}_v^{(l-1)})$$

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{e}_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_{\overline{u}}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{\overline{v}}^{(l-1)})$$

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights Between v and u

$$\boldsymbol{e_{vu}} = a(\mathbf{W}^{(l)}\mathbf{h}_{\overline{u}}^{(l-1)}, \mathbf{W}^{(l)}\boldsymbol{h}_{\overline{v}}^{(l-1)})$$

Make use of last layer's output

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights Between v and u

$$\mathbf{e}_{vu} = \mathbf{a}(\mathbf{W}^{(l)}\mathbf{h}_{\overline{u}}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{\overline{v}}^{(l-1)})$$

Make use of last layer's output

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$e_{vu} = \boxed{\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}} \boxed{\mathbf{W}^{(l)} \mathbf{h}_{v}^{(l-1)}}$$

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$
Make use of last layer's output

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights
Between v and u
Softmax function
$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$
Make use of last layer's output

Learnable parameters?

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights Between v and u

Softmax function → normalized weights

$$e_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{v}^{(l-1)}) \qquad \qquad \alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$
Make use of last layer's output

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights
Between v and u

$$e_{vu} = \alpha(\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \mathbf{W}^{(l)} \mathbf{h}_{v}^{(l-1)}$$
Make use of last layer's output
$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

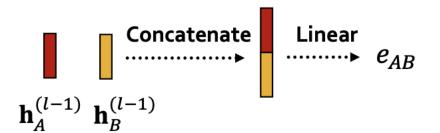
$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Q: what is a 's structure?
$$\mathbf{e}_{vu} = \alpha(\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}, \mathbf{W}^{(l)} \mathbf{h}_{v}^{(l-1)})$$
Make use of last layer's output
$$\mathbf{h}_{v}^{(l)} \mathbf{h}_{u}^{(l-1)} = \sigma(\sum_{u \in N(v)} \mathbf{w}^{(l)} \mathbf{h}_{u}^{(l-1)} \mathbf{h}_{v}^{(l-1)}$$

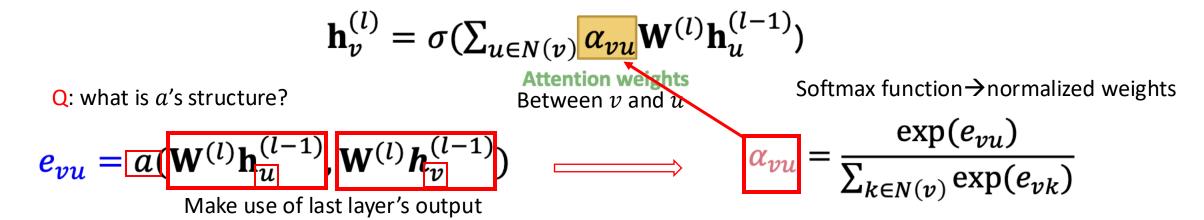
$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

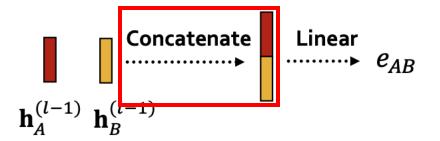
$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
O: what is a 's structure?

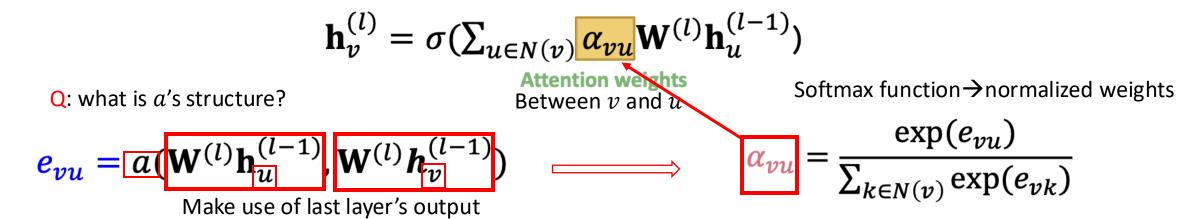
$$\mathbf{e}_{vu} = \boxed{\alpha(\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})} \mathbf{W}^{(l)} \mathbf{h}_{v}^{(l-1)})$$
Make use of last layer's output

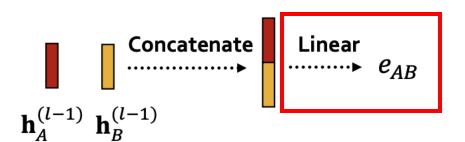
$$\mathbf{h}_{v}^{(l)} \mathbf{h}_{u}^{(l-1)} \mathbf{h}_{v}^{(l-1)}$$
Softmax function \rightarrow normalized weights
$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

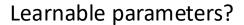


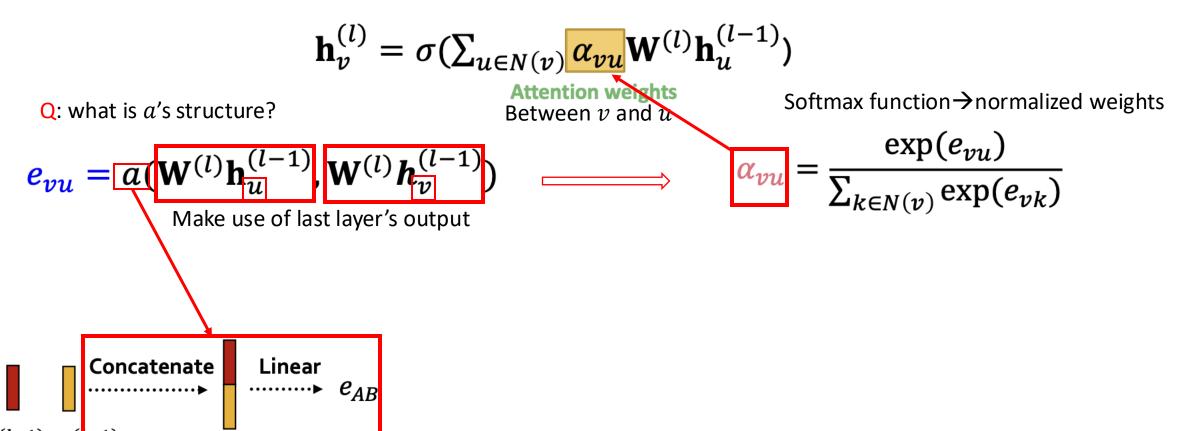




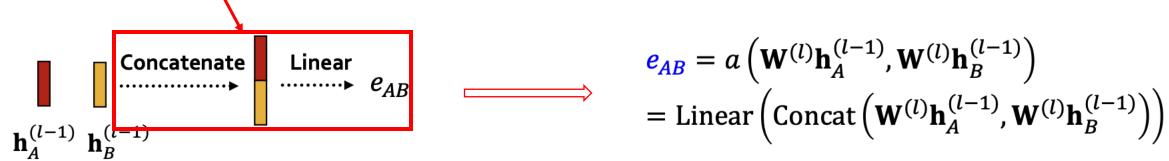




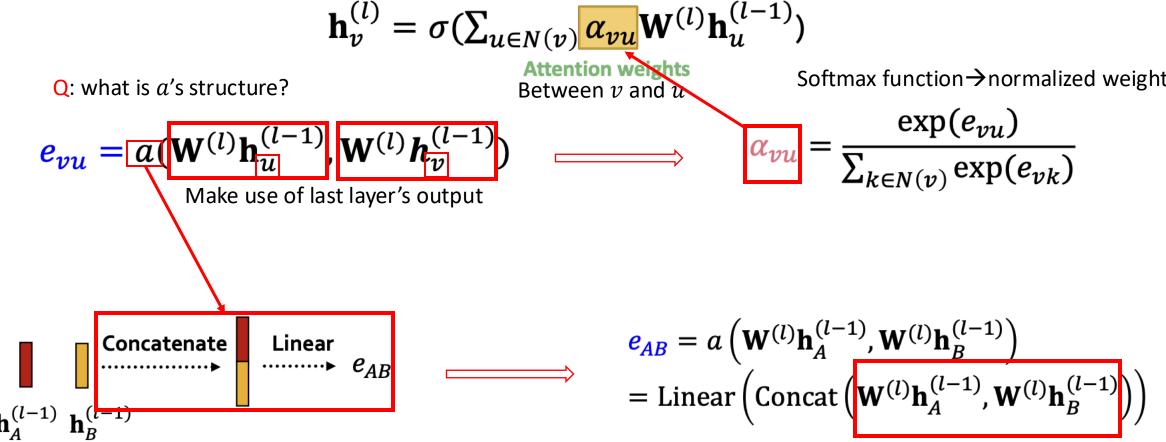




Learnable parameters? $\mathbf{h}_v^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)})$ On what is α 's structure? Attention weights Between v and u Softmax function in normalized weights $\mathbf{v}_{vu} = \mathbf{a}(\mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}) \mathbf{W}^{(l)} \mathbf{h}_v^{(l-1)}$ Make use of last layer's output $\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$



Learnable parameters? Softmax function → normalized weights



Learnable parameters? $\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$ Softmax function → normalized weights Q: what is a's structure? Between v and uMake use of last layer's output Concatenate

Learnable parameters? $\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$ Softmax function → normalized weights Q: what is a's structure? Between v and uMake use of last layer's output Linear Concatenate