Neural Networks Design And Application

Two hops (two nearest neighbors, 2NN)

9

(input layer: pixel values \rightarrow location information)

INPUT GRAPH

INPUT GRAPH

A, B, C, E, F

INPUT GRAPH

A, B, C, E, F

17

Only 5 nearest neighbors

Image credit http://web.stanford.edu/class/cs224w/slides/07-GNN2.pdf

Only 5 nearest neighbors

Image credit http://web.stanford.edu/class/cs224w/slides/07-GNN2.pdf

Q: how can we smooth this curve to be more like a straight line?

Image credit <u>https://graphics.stanford.edu/courses/cs468-12-spring/LectureSlides/06_smoothing.pdf</u>

Laplacian smoothing

Q: how can we smooth this curve to be more like a straight line? $(\mathbf{p}_{i-1} + \mathbf{p}_{i+1})/2 - \mathbf{p}_i$

line?
$$L(\mathbf{p}_{i}) = \frac{1}{2} (\mathbf{p}_{i+1} - \mathbf{p}_{i}) + \frac{1}{2} (\mathbf{p}_{i-1} - \mathbf{p}_{i})$$

Q: how can we smooth this curve to be more like a straight line? $(\mathbf{p}_{i-1} + \mathbf{p}_{i+1})/2 - \mathbf{p}_i$

line?
$$L(\mathbf{p}_{i}) = \frac{1}{2} (\mathbf{p}_{i+1} - \mathbf{p}_{i}) + \frac{1}{2} (\mathbf{p}_{i-1} - \mathbf{p}_{i})$$

Q: how can we smooth this curve to be more like a straight line? $(\mathbf{p}_{i-1} + \mathbf{p}_{i+1})/2 - \mathbf{p}_i$

line?
$$L(\mathbf{p}_{i}) = \frac{1}{2} (\mathbf{p}_{i+1} - \mathbf{p}_{i}) + \frac{1}{2} (\mathbf{p}_{i-1} - \mathbf{p}_{i})$$

Q: how can we smooth this curve to be more like a straight line?

$$(\mathbf{p}_{i-1} + \mathbf{p}_{i+1})/2 - \mathbf{p}_i$$

line?
$$L(\mathbf{p}_i) = \frac{1}{2} (\mathbf{p}_{i+1} - \mathbf{p}_i) + \frac{1}{2} (\mathbf{p}_{i-1} - \mathbf{p}_i)$$

Q: how can we smooth this curve to be more like a straight line?

Q: what if we repeat for many times?

Q: how can we smooth this curve to be more like a straight line?

Q: what if we repeat for many times? Converge to a straight line?

Q: how can we smooth this curve to be more like a straight line?

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

34 vertices of two classes and 78 edges

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

34 vertices of two classes and 78 edges

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Two classes: yellow vs. blue

34 vertices of two classes and 78 edges

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Q: is it linearly separable (can we use a straight line to separate two classes well)?

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Two classes: yellow vs. blue

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Two classes: yellow vs. blue

Q: is it linearly separable (can we use a straight line to separate two classes well)?

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

34 vertices of two classes and 78 edges

Q: is it linearly separable (can we use a straight line to separate two classes well)?

Q: will you choose a 2-layer or 5-layer GCN for the node classification on this dataset?

Image credit <u>https://arxiv.org/pdf/1801.07606.pdf</u>.

• Properly set the number of GCN layers

• Properly set the number of GCN layers (k hops-away neighbors)

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer
 - Use layers that do not aggregate neighbors

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer
 - Use layers that do not aggregate neighbors

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer
 - Use layers that do not aggregate neighbors

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer
 - Use layers that do not aggregate neighbors

- Properly set the number of GCN layers (k hops-away neighbors)
- Increase the number of layers that do not aggregate neighbors
 - Use MLP to aggregate neighbors' feature from the previous layer
 - Use layers that do not aggregate neighbors

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

A standard GCN layer

•
$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

This is our $F(\mathbf{x})$

A standard GCN layer

•
$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

This is our $F(\mathbf{x})$

A standard GCN layer

•
$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

This is our $F(\mathbf{x})$

A GCN layer with skip connection

•
$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} + \mathbf{h}_{v}^{(l-1)} \right)$$

 $F(\mathbf{x}) + \mathbf{x}$

Other ways to add skip connections

Other ways to add skip connections

Oversmoothing is still an open problem