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Machine learning paradigm

ML model for bus 
recognition

Training data

Testing data
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Machine learning paradigm

ML model for 
panda recognition

Training data

Testing data
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Adversarial data

Adversarial data: used to fool the trained model
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Adversarial data

Adversarial data: used to fool the trained model

Similar to the original one 
from human’s eyes
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Machine learning model VS adversarial data

ML model for 
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Machine learning model VS adversarial data

Figure 1, Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and 
harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).
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Use adversarial data to attack models
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Machine learning model VS adversarial data

Figure 1, Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and 
harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

Use adversarial data to attack models
Deep learning models are particularly vulnerable
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Why care about attacks 

A real Stop sign A physical perturbation 
applied to a Stop sign

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. "Robust physical-world 
attacks on deep learning visual classification." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625-1634. 2018.
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Why care about attacks 

A real Stop sign A physical perturbation 
applied to a Stop sign

Artificial patches

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. "Robust physical-world 
attacks on deep learning visual classification." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625-1634. 2018.
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Prediction result?
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attacks on deep learning visual classification." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625-1634. 2018.
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Why care about attacks 

A real Stop sign A physical perturbation 
applied to a Stop sign

Artificial patches

Prediction result?

45 MPH

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. "Robust physical-world 
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Why care about attacks 

A real Stop sign A physical perturbation 
applied to a Stop sign

Artificial patches

Prediction result?

45 MPH

What if a driver recognize STOP as 45 MPH?

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. "Robust physical-world 
attacks on deep learning visual classification." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625-1634. 2018.
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Why care about attacks/adversarial noise?

Q: can we use a simple photo to unlock face recognition system?
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Why care about attacks/adversarial noise?

Q: can we use a simple photo to unlock face recognition system?

(your smart phone)
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Why care about attacks/adversarial noise?
Q: Can we fool deep models with only one pixel modified?
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Why care about attacks/adversarial noise?

All with high confidence (>49.8%)
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Why care about attacks/adversarial noise?

Figure 1, Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. "One pixel 

attack for fooling deep neural networks." IEEE Transactions on Evolutionary 

Computation 23, no. 5 (2019): 828-841.

All with high confidence (>49.8%)
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True label

Predicted label



Robustness of machine learning models

ML model for 
panda recognition

Original image: 

Adversarial image: 
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ML model for 
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Learning with adversarial data

ML model for 
panda recognition

Q: can we build a new training set that includes adversarial data?
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Learning with adversarial data

ML model for 
panda recognition

Q: can we build a new training set that includes adversarial data?

Small modification (one pixel)

Panda

Not panda

All possible one-
pixel modification

Q: for a grey scale images of size 28x28, how 
many possible one-pixel changes can we have?

255 x 28 x 28 
= 199920 

0~255
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Learning with adversarial data

ML model for 
panda recognition

Q: can we build a new training set that includes adversarial data?

Small modification (one pixel)

Panda

Not panda

All possible one-
pixel modification
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Worst case minimization
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55



Worst case minimization

Panda

Not panda

All possible one-
pixel modification

Panda

Not panda

Worst adversarial data

56



Worst case minimization

Panda

Not panda

All possible one-
pixel modification

Panda

Not panda

Worst adversarial data

57



Worst case minimization

Panda

Not panda

All possible one-
pixel modification

Panda

Not panda

Worst adversarial data

58



Worst case minimization
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Worst case minimization

Panda

Not panda

All possible one-
pixel modification

Panda

Not panda

Worst adversarial data

Worst: most violate 
the hyperplane
(most far away)

Our goal: a new hyperplane that can 
correctly classify adversarial data 60
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