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Q: how many Gaussian distributions?
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mu=4, sigma=1.5
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ML model for 
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Small modification (one pixel)
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All possible one-
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Q: for a grey scale images of size 28x28, how 
many possible one-pixel changes can we have?

255 x 28 x 28 
= 199920 
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Limit: additive noise is only one way to generate adversarial data
Q: can generative models help?
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