Generative models

Neural Networks Design And Application

Training data

х

Training data

Training data

Sample value

Q: how many Gaussian distributions?

Q: how many Gaussian distributions?

Q: how many Gaussian distributions?

P(x', y) = P(x'|y)P(y)

P(x', y) = P(x'|y)P(y)

Pick the label y with largest P(x', y)

P(x',+1) = P(x'|+1)P(+1)P(x',-1) = P(x'|-1)P(-1)

$$P(x', y) = P(x'|y)P(y)$$

Pick the label y with largest P(x', y)

Generative models

Generative models

Adversarial learning and generative models

Adversarial learning and generative models

Limit: additive noise is only one way to generate adversarial data

Adversarial learning and generative models

Limit: additive noise is only one way to generate adversarial data Q: can generative models help?

Network: discriminative model

worse accuracy

worse accuracy

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))].$$

More details at tutorial note https://arxiv.org/pdf/1406.2661.pdf and original paper https://arxiv.org/pdf/1406.2661.pdf

