
ML Basics
CPT_S 434/534 Neural network design and application
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Course overview

Deep learning

Machine learning

Computer vision

Natural language 
processing

Machine learning foundations
Deep learning foundations

Convolutional neural networks
Recurrent neural networks

Graph neural networks
Generative adversarial networks

Neural architecture search
……
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Deep learning? What is learning?

What is in this picture?
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Deep learning? What is learning?

Learning 
system

Past data

Future data

What is it?
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Husky vs Malamute

How to differentiate two breeds of dogs?
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Husky vs Malamute

How to differentiate two breeds of dogs?

Hair length?
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Husky vs Malamute

How to differentiate two breeds of dogs?

Face markings?
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Husky vs Malamute

How to differentiate two breeds of dogs?

Size?
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Husky vs Malamute

How to differentiate two breeds of dogs?

Size?

Data from https://www.perfectdogbreeds.com/malamute-vs-husky/ 9
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Deep learning? What is learning?

Learning 
system

Past data

Future data

What is it?

Q: can we specify those key components?
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Machine learning paradigm

Learning 
model

Past data: features

Prediction on future data

Task: prediction/decision

(pre-defined setting)
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Machine learning paradigm

Learning 
model

Past data: features

Prediction on future data

Q: How to choose/generate useful features?

Task: prediction/decision

(pre-defined setting)
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Machine learning paradigm

Learning 
model

Past data: features

Prediction on future data

Q: How to determine this model?

Task: prediction/decision

(pre-defined setting)

Q: How to choose/generate useful features?
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Machine learning paradigm

Learning 
model

Past data: features

Prediction on future data

Q: How to determine this model?

Task: prediction/decision

(pre-defined setting)

Q: How to choose/generate useful features?

In practice:
We first inspect what TASK it is
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Pre-defined problem settings (by task)

• Classification: traffic sign recognition

Learning model for 
traffic sign recognition

Stop

Q: How we can use recognition in practice?
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Pre-defined problem settings (by task)

• Classification: traffic sign recognition

A use example: autonomous driving system
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Pre-defined problem settings (by task)

• Classification: camera translate app

Image from https://petapixel.com/2015/01/14/googles-translate-app-can-now-use-camera-translate-world-real-time/ 
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Pre-defined problem settings (by task)

Retrieved from https://covid19.uclaml.org/ 

Not happen

• Prediction vs decision making Regression:
Real-valued outputs
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Pre-defined problem settings (by task)

No trade

Screen-print from zillow.com    

• Prediction vs decision making Regression:
Real-valued outputs
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Pre-defined problem settings (by task)

• Prediction vs decision making
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Pre-defined problem settings (by task)

• Prediction vs decision making
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Machine learning paradigm

Learning 
model

Past data: features

Prediction on future data

Q: How to determine this model?

Task: prediction/decision

(pre-defined setting)

Q: How to choose/generate useful features?

In practice:
We first inspect what TASK it is
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Pre-defined problem settings (by label info)

• Supervised learning

bus

bus

dog

dog

Complete label information: supervised learning
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Pre-defined problem settings (by label info)

• Non-supervised learning?

bus

dog

Labeled and unlabeled data: semi-supervised learning
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Pre-defined problem settings (by label info)

• Non-supervised learning?

Unlabeled data: unsupervised learning
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Pre-defined problem settings (by label info)

• Unsupervised learning

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/DeepLearning/blob/master/Slides/1_ML_Basics.pdf 

Raw data

Classification task:
Finite types of outputs
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Pre-defined problem settings (by label info)

• Unsupervised learning

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/DeepLearning/blob/master/Slides/1_ML_Basics.pdf 

Raw data

2d x-y coordinate

Classification task:
Finite types of outputs
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Pre-defined problem settings (by label info)

• Unsupervised learning

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/DeepLearning/blob/master/Slides/1_ML_Basics.pdf 

Raw data

2d x-y coordinate
model

Classification task:
Finite types of outputs
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Pre-defined problem settings (by label info)

• Unsupervised learning

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/DeepLearning/blob/master/Slides/1_ML_Basics.pdf 

Raw data

2d x-y coordinate
model

Classification task:
Finite types of outputs
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Pre-defined problem settings (by label info)

• Unsupervised learning

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/DeepLearning/blob/master/Slides/1_ML_Basics.pdf 

Raw data

2d x-y coordinate
model

Classification task:
Finite types of outputs
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Pre-defined problem settings (by label info)

• Unsupervised learning

Autoencoder for hand-written digit data, retrieved from Shusen Wang’s slides at
https://github.com/wangshusen/DeepLearning/blob/master/Slides/1_ML_Basics.pdf 

Raw data

2d x-y coordinate
model

Classification task:
Finite types of outputs
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Machine learning paradigm

Learning 
model

Past data: features

Prediction on future data

Q: How to determine this model?

Task: prediction/decision

(pre-defined setting)

Q: How to choose/generate useful features?

In practice:
We first inspect what TASK it is
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Features 

No trade

Screen-print from zillow.com    

Q: What features can we use?
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Feature in house price prediction

• Home characteristics: lot size, location, #bedrooms

• Unique features: hardwood floors, granite countertops or a 
landscaped backyard

• On-market data: listing price, description, days on the market

• Off-market data: tax assessments, prior sales

https://www.zillow.com/z/zestimate/ 
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Feature in house price prediction

Land size (sqft)

#bedrooms

Zip code

Carpet (Y/N)

Description text

#bathrooms

Garage (Y/N)

Existing physical 
properties
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Feature in house price prediction

14234

3

99163

1

4.3214

6.378

…

3

1

Land size (sqft)

#bedrooms

Zip code

Carpet (Y/N)

Description text

#bathrooms

Garage (Y/N)

Assume:
We have a feature generator for text

Existing physical 
properties
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Feature in house price prediction

14234

3

99163

1

4.3214

6.378

…

3

1

Land size (sqft)

#bedrooms

Zip code

Carpet (Y/N)

Description text

#bathrooms

Garage (Y/N)

Assume:
We have a feature generator for text

A feature: 𝑥 ∈ ℝ𝑑

an element 
belongs to a set

d-dimension 
real number

Existing physical 
properties

A feature or 
representation
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Machine learning paradigm

Learning 
model

Past data: features

Prediction on future data

Q: How to determine this model?

Task: prediction/decision

(pre-defined setting)

Q: How to choose/generate useful features?

In practice:
We first inspect what TASK it is

Choose a type of model
Determine its parameters
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

Try to separate two classes
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

A linear function

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

A linear function

𝑦 =  𝑎𝑥 + 𝑏

A hypothesis class

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

𝑥 − 𝑥0
2

𝑎
+

𝑦 − 𝑦0
2

𝑏
= 1

Another hypothesis class

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

or

A linear function

𝑦 =  𝑎𝑥 + 𝑏

𝑥 − 𝑥0
2

𝑎
+

𝑦 − 𝑦0
2

𝑏
= 1

A hypothesis class

Another hypothesis class

Try to separate two classes

Q: how to separate them?

45

https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/


Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

or

A linear function

𝑦 =  𝑎𝑥 + 𝑏

𝑥 − 𝑥0
2

𝑎
+

𝑦 − 𝑦0
2

𝑏
= 1

A hypothesis class

Another hypothesis class

Q: what is the feature used here?

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

or

A linear function

𝑦 =  𝑎𝑥 + 𝑏

𝑥 − 𝑥0
2

𝑎
+

𝑦 − 𝑦0
2

𝑏
= 1

A hypothesis class

Another hypothesis class

Q: what is the feature used here?

A: x-y coordinates

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

or

A linear function

𝑦 =  𝑎𝑥 + 𝑏

𝑥 − 𝑥0
2

𝑎
+

𝑦 − 𝑦0
2

𝑏
= 1

A hypothesis class

Another hypothesis class

Q: what are their parameters?

Try to separate two classes

Q: how to separate them?
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Build a model

• What is a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/ 

An ellipse (nonlinear function)

or

A linear function

𝑦 =  𝑎𝑥 + 𝑏

(𝑥 − 𝑥0)2

𝑎
+

(𝑦 − 𝑦0)2

𝑏
= 1

A hypothesis class

Another hypothesis class

Q: what are their parameters?

Try to separate two classes

Q: how to separate them?
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

50



Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Image from www.explainthatstuff.com 51
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Image from www.explainthatstuff.com 

Mercury or alcohol
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Image from www.explainthatstuff.com 

Mercury or alcohol

1. Expands when temperature 
goes higher
2. Thermal expansion coefficients
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Image from 
www.explainthatstuff.com 
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Right image from 
www.explainthatstuff.com Left image from https://en.wikipedia.org/wiki/Bimetallic_strip 

Bimetallic strip
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Right image from 
www.explainthatstuff.com 

1. Metal 1 expands faster than metal 2 when heating
2. Convert to temperature difference 
     by thermal expansion coefficients

Left image from https://en.wikipedia.org/wiki/Bimetallic_strip 

Bimetallic strip
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Image from www.explainthatstuff.com 57
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

1. Read voltage across its metal probe
2. Measure how much current flow through it and the resistance
3. Convert resistance into a measurement of temperature

Image from www.explainthatstuff.com 58
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Estimation mechanismInput signals Output signals
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Thermal expansion 
coefficients

How much 
expansion

Temperature 
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Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Conversion from 
voltage flow 

(resistance) to 
temperature  

Voltage flow Temperature 

61



Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Estimation mechanism:
Reasonable model

+
accurate parameters

Input signals Output signals

Analogous to machine learning paradigm 62



Analogous to Thermometers 

• Types of thermometers
• Liquid thermometers

• Dial thermometers

• Electronic thermometers

Estimation mechanism:
Reasonable model

+
accurate parameters

Input signals Output signals

Machine learning learns these parameters
63
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