CPT_S 434/534 Neural network design and application

Core questions to answer

- What can be learned by machine learning models?
- What conditions are required to successfully learn?

 $concept \ c \colon \mathfrak{X} \to \mathfrak{Y}$

An underlying concept function (mapping) $concept \ c \colon \mathfrak{X} \to \mathfrak{Y}$

Image from https://www.rockpapershotgun.com/minecraft-house-ideas

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time

A hypothesis class **Definition 2.1 (Generalization error)** Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution \mathcal{D} , the generalization error or risk of h is defined by $R(h) = \left[\mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] \right] = \mathbb{E}_{x \sim \mathcal{D}} \left[1_{h(x) \neq c(x)} \right], \qquad (2.1)$

where 1_{ω} is the indicator function of the event ω^2 .

A hypothesis class **Definition 2.1 (Generalization error)** Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution \mathcal{D} , the generalization error or risk of h is defined by $R(h) = \boxed{\mathbb{P}[h(x) \neq c(x)]}_{x \sim \mathcal{D}} = \underbrace{\mathbb{E}}_{x \sim \mathcal{D}} \begin{bmatrix} 1_{h(x) \neq c(x)} \end{bmatrix}, \qquad (2.1)$ where 1_{ω} is the indicator **Risk: in population level** \rightarrow scan all samples in the world (not feasible in general)

Q: What is it? A hypothesis class **Definition 2.1 (Generalization error)** Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution \mathcal{D} , the generalization error or risk of h is defined by $R(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}\left[1_{h(x) \neq c(x)}\right],$ (2.1)where 1_{ω} is the indicator Risk: in population level \rightarrow scan all samples in the world (not feasible in general)

Review: Build a model

Image retrieved from https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$ for all distributions \mathcal{D} on \mathfrak{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(h_S) \le \epsilon] \ge 1 - \delta.$$
(2.4)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then \mathfrak{C} is said to be efficiently PAClearnable. When such an algorithm \mathcal{A} exists, it is called a PAC-learning algorithm for \mathfrak{C} .

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$ for all distributions \mathcal{D} on \mathfrak{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m} R(h_S) \le \epsilon \ge 1 - \delta.$$
(2.4)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then \mathcal{C} is said to be efficiently PAClearnable. When such an algorithm \mathcal{A} exists, it is called a PAC-learning algorithm for \mathcal{C} .

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} on \mathfrak{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{\substack{S \sim \mathcal{D}^m \\ \mathsf{Approximately Correct}}} \mathbb{P}_{robably} \qquad (2.4)$$

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then \mathcal{C} is said to be efficiently PAClearnable. When such an algorithm \mathcal{A} exists, it is called a PAC-learning algorithm for \mathcal{C} .

Polynomial:
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
,

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} on \mathfrak{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(h_S) \le \epsilon] \ge 1 - \delta.$$
(2.4)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then \mathfrak{C} is said to be efficiently PAClearnable. When such an algorithm \mathcal{A} exists, it is called a PAC-learning algorithm for \mathfrak{C} .

Polynomial:
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
,

Definition 2.3 (PAC-learning) A concept class \mathbb{C} is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathbb{D} on \mathfrak{X} and for any target concept $c \in \mathbb{C}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(h_S) \le \epsilon] \ge 1 - \delta.$$
(2.4)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then \mathcal{C} is said to be efficiently PAClearnable. When such an algorithm \mathcal{A} exists, it is called a PAC-learning algorithm for \mathcal{C} .

$$m \rightarrow S \rightarrow h_S$$

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time

Image from https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time

Agnostic PAC learning

Definition 2.14 (Agnostic PAC-learning) Let \mathcal{H} be a hypothesis set. \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon \ge 1 - \delta.$$
(2.21)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Agnostic PAC learning

$$R(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}\left[1_{h(x)\neq c(x)}\right],$$

$$R(h) = \mathbb{P}_{(x,y)\sim \mathcal{D}}[h(x) \neq y] = \mathbb{E}_{(x,y)\sim \mathcal{D}}\left[1_{h(x)\neq y}\right].$$

$$R(h) = \mathbb{P}_{(x,y)\sim \mathcal{D}}[h(x) \neq y] = \mathbb{E}_{(x,y)\sim \mathcal{D}}\left[1_{h(x)\neq y}\right].$$

$$R(h) = \mathbb{P}_{(x,y)\sim \mathcal{D}}\left[h(x) \neq y\right] = \mathbb{E}_{(x,y)\sim \mathcal{D}}\left[1_{h(x)\neq y}\right].$$

$$R(h) = \mathbb{E}_{(x,y)\sim \mathcal{D}}\left[h(x) \neq y\right] = \mathbb{E}_{(x,y)\sim \mathcal{D}}\left[1_{h(x)\neq y}\right].$$

Definition 2.14 (Agnostic PAC-learning) Let \mathcal{H} be a hypothesis set. \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{D} over $\mathfrak{X} \times \mathcal{Y}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon] \ge 1 - \delta.$$
(2.21)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Agnostic PAC learning

Definition 2.14 (Agnostic PAC-learning) Let \mathcal{H} be a hypothesis set. \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{D} over $\mathfrak{X} \times \mathcal{Y}$, the following holds for any sample size $m \ge poly(1/\epsilon, 1/\delta, n, size(c))$:

$$\mathbb{P}_{S \sim \mathcal{D}^m} [R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon] \ge 1 - \delta.$$
(2.21)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Bayes error

Definition 2.15 (Bayes error) Given a distribution \mathcal{D} over $\mathfrak{X} \times \mathfrak{Y}$, the Bayes error R^* is defined as the infimum of the errors achieved by measurable functions $h: \mathfrak{X} \to \mathfrak{Y}$:

$$R^{\star} = \inf_{\substack{h \\ h \ measurable}} R(h). \tag{2.22}$$

A hypothesis h with $R(h) = R^*$ is called a Bayes hypothesis or Bayes classifier.

All possible hypotheses (may not be included in H)

Bayes error

Definition 2.15 (Bayes error) Given a distribution \mathcal{D} over $\mathfrak{X} \times \mathfrak{Y}$, the Bayes error R^* is defined as the infimum of the errors achieved by measurable functions $h: \mathfrak{X} \to \mathfrak{Y}$: The best risk we may reach $\mathfrak{P}^* = \inf_{\substack{h \\ h \ measurable}} R(h)$. (2.22) A hypothesis h with $R(h) = R^*$ is called a Bayes hypothesis or Bayes classifier. All possible hypotheses (may not be included in H)

 $R(h) - R^*$

$$R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.$$

 h^* h h_{Bayes}

Q: can we enlarge H?

Trade-off: estimation and approximation

Trade-off: estimation and approximation

Q: how to control the richness of H?

Regularized problem

 $\lambda \leftrightarrow b$

Empirical risk

Definition 2.2 (Empirical error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and a sample $S = (x_1, \dots, x_m)$ the empirical error or empirical risk of h is defined by Training set $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{h(x_i) \neq c(x_i)}.$ (2.2)

Interpret: average mistakes a hypothesis h makes on a sample

Empirical risk

Definition 2.2 (Empirical error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and a sample $S = (x_1, \ldots, x_m)$ the empirical error or empirical risk of h is defined by Training set $\widehat{R}_{S}(h) =$ $\frac{1}{m}\sum \mathbf{1}_{h(x_i)\neq c(x_i)}.$ (2.2)Interpret: average mistakes a hypothesis h makes on a sample stochastic version $\widehat{R}_{\mathcal{S}}(f) := \frac{1}{n}$ $\sum \mathbb{I}_{f(x)\neq y}.$

$$R(h) = \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x)\neq y] = \mathbb{E}_{(x,y)\sim\mathcal{D}}[1_{h(x)\neq y}]$$

risk (in population): not accessible

Empirical risk minimization

Empirical risk minimization

Empirical risk minimization

$$R(h) \le \widehat{R}_S(h) + \sqrt{\frac{2d\log\frac{em}{d}}{m}} + \sqrt{\frac{\log\frac{1}{\delta}}{2m}} = O(\sqrt{1/m}) \quad (3.29)$$

47