CPT_S 434/534 Neural network design and application

Core questions to answer

- What can be learned by machine learning models?
- What conditions are required to successfully learn?

concept $c: \mathfrak{X} \to \mathcal{Y}$

An underlying concept function (mapping) *concept* $c: \mathfrak{X} \to \mathfrak{Y}$

Image from<https://www.rockpapershotgun.com/minecraft-house-ideas>

Image from <https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time>

Image from <https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time>

Image from <https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time>

Image from <https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time>

A hypothesis class **Definition 2.1 (Generalization error)** Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution D , the generalization error or risk of h is defined by $R(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}[1_{h(x) \neq c(x)}],$ (2.1)

where 1_{ω} is the indicator function of the event ω .

A hypothesis class **Definition 2.1 (Generalization error)** Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution D , the generalization error or risk of h is defined by $R(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}[1_{h(x) \neq c(x)}],$ (2.1) where 1_{ω} is the indicator Risk: in population level \rightarrow scan all samples in the world (not feasible in general)

Q: What is it?A hypothesis class **Definition 2.1 (Generalization error)** Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and an underlying distribution D , the generalization error or risk of h is defined by $R(h) = \mathbb{E}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathbb{E}_{x \sim \mathcal{D}}[1_{h(x) \neq c(x)}],$ (2.1) where 1_{ω} is the indicator Risk: in population level \rightarrow scan all samples in the world (not feasible in general)

Review: Build a model

Image retrieved from<https://machinelearningmastery.com/how-to-develop-an-intuition-skewed-class-distributions/> 16

Definition 2.3 (PAC-learning) A concept class C is said to be PAC-learnable if there exists an algorithm A and a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$ for all distributions D on X and for any target concept $c \in \mathcal{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\mathbb{P}_{S \sim \mathcal{D}^m} [R(h_S) \le \epsilon] \ge 1 - \delta. \tag{2.4}
$$

If A further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then C is said to be efficiently PAClearnable. When such an algorithm A exists, it is called a PAC-learning algorithm for $\mathfrak{C}.$

Definition 2.3 (PAC-learning) A concept class C is said to be PAC-learnable if there exists an algorithm A and a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$ for all distributions D on X and for any target concept $c \in \mathcal{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\underset{S \sim \mathcal{D}^m}{\mathbb{P}} \left[R(h_S) \le \epsilon \right] \ge 1 - \delta. \tag{2.4}
$$

If A further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then C is said to be efficiently PAClearnable. When such an algorithm A exists, it is called a PAC-learning algorithm for $\mathfrak{C}.$

Definition 2.3 (PAC-learning) A concept class C is said to be PAC-learnable if there exists an algorithm A and a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions D on X and for any target concept $c \in \mathcal{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\mathbb{P}\left[\frac{R(h_S) \le \epsilon}{\text{Approximately Correct}}\right] \ge 1 - \delta. \quad \text{Probability} \tag{2.4}
$$

learnable. When such an algorithm A exists, it is called a PAC-learning algorithm for $\mathfrak{C}.$

Polynomial:
$$
a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0
$$
,

Definition 2.3 (PAC-learning) A concept class C is said to be PAC-learnable if there exists an algorithm A and a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions D on X and for any target concept $c \in \mathcal{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\mathbb{P}_{S \sim \mathcal{D}^m} [R(h_S) \le \epsilon] \ge 1 - \delta. \tag{2.4}
$$

If A further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then C is said to be efficiently PAClearnable. When such an algorithm A exists, it is called a PAC-learning algorithm for $\mathfrak{C}.$

Polynomial:
$$
a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0,
$$

Definition 2.3 (PAC-learning) A concept class C is said to be PAC-learnable if there exists an algorithm A and a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions D on X and for any target concept $c \in \mathcal{C}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\mathbb{P}_{S \sim \mathcal{D}^m} [R(h_S) \le \epsilon] \ge 1 - \delta. \tag{2.4}
$$

If A further runs in $poly(1/\epsilon, 1/\delta, n, size(c))$, then C is said to be efficiently PAClearnable. When such an algorithm A exists, it is called a PAC-learning algorithm for $\mathfrak{C}.$

$$
m \to S \to h_S
$$

Image from <https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time>

Image from <https://www.self.com/story/heres-how-to-pick-a-perfect-melon-every-time>

Agnostic PAC learning

Definition 2.14 (Agnostic PAC-learning) Let \mathcal{H} be a hypothesis set. A is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions D over $\mathfrak{X} \times \mathfrak{Y}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[R(h_S) - \underset{h \in \mathcal{H}}{\min} R(h) \le \epsilon] \ge 1 - \delta. \tag{2.21}
$$

If A further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Agnostic PAC learning

$$
R(h) = \mathop{\mathbb{P}}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathop{\mathbb{E}}_{x \sim \mathcal{D}}\left[1_{h(x) \neq c(x)}\right],
$$

\n
$$
R(h) = \mathop{\mathbb{P}}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] = \mathop{\mathbb{E}}_{(x,y) \sim \mathcal{D}}[1_{h(x) \neq y}].
$$

\n
$$
R(h) = \mathop{\mathbb{P}}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] = \mathop{\mathbb{E}}_{(x,y) \sim \mathcal{D}}[1_{h(x) \neq y}].
$$

\n
$$
R(h) = \mathop{\mathbb{P}}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] = \mathop{\mathbb{E}}_{(x,y) \sim \mathcal{D}}[1_{h(x) \neq y}].
$$

Definition 2.14 (Agnostic PAC-learning) Let \mathcal{H} be a hypothesis set. A is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions D over $\mathfrak{X} \times \mathfrak{Y}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[R(h_S) - \underset{h \in \mathcal{H}}{\min} R(h) \le \epsilon] \ge \boxed{1 - \delta}.
$$
\n(2.21)

If A further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Agnostic PAC learning

$$
R(h) = \mathop{\mathbb{P}}_{x \sim \mathcal{D}}[h(x) \neq c(x)] = \mathop{\mathbb{E}}_{x \sim \mathcal{D}}[1_{h(x) \neq c(x)}],
$$

\n
$$
R(h) = \mathop{\mathbb{P}}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] = \mathop{\mathbb{E}}_{(x,y) \sim \mathcal{D}}[1_{h(x) \neq y}].
$$

\n
$$
R(h) = \mathop{\mathbb{P}}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] = \mathop{\mathbb{E}}_{(x,y) \sim \mathcal{D}}[1_{h(x) \neq y}].
$$

Definition 2.14 (Agnostic PAC-learning) Let \mathcal{H} be a hypothesis set. A is an agnostic PAC-learning algorithm if there exists a polynomial function $poly(\cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions D over $\mathfrak{X} \times \mathfrak{Y}$, the following holds for any sample size $m \geq poly(1/\epsilon, 1/\delta, n, size(c))$:

$$
\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[R(h_S) - \underset{h \in \mathcal{H}}{\min} R(h) \le \epsilon] \ge \boxed{1 - \delta}.
$$
\n(2.21)

If A further runs in $poly(1/\epsilon, 1/\delta, n)$, then it is said to be an efficient agnostic PAC-learning algorithm.

Bayes error

Definition 2.15 (Bayes error) Given a distribution D over $\mathfrak{X} \times \mathfrak{Y}$, the Bayes error R^* is defined as the infimum of the errors achieved by measurable functions $h: \mathcal{X} \to \mathcal{Y}$:

$$
R^* = \inf_{\substack{h \text{ measurable} \\ h \text{ measurable}}} R(h). \tag{2.22}
$$

A hypothesis h with $R(h) = R^*$ is called a Bayes hypothesis or Bayes classifier.

All possible hypotheses (may not be included in H)

Bayes error

Definition 2.15 (Bayes error) Given a distribution D over $\mathfrak{X} \times \mathfrak{Y}$, the Bayes error R^* is defined as the infimum of the errors achieved by measurable functions $h: \mathcal{X} \to \mathcal{Y}$: The best risk we may reach $R^* = \begin{bmatrix} \inf_h \\ h \text{ measurable} \end{bmatrix} R(h).$ (2.22) A hypothesis h with $R(h) = R^*$ is called a Bayes hypothesis or Bayes classifier. All possible hypotheses (may not be included in H)

 $R(h) - R^*$

$$
R(h) - R^* = \underbrace{\left(R(h) - \inf_{h \in \mathcal{H}} R(h)\right)}_{\text{estimation}} + \underbrace{\left(\inf_{h \in \mathcal{H}} R(h) - R^*\right)}_{\text{approximation}}.
$$

 h_{Bayes} \overline{H}

Q: can we enlarge H?

Trade-off: estimation and approximation

Trade-off: estimation and approximation

Q: how to control the richness of H?

Regularized problem

 $\lambda \leftarrow \rightarrow b$

Empirical risk

Definition 2.2 (Empirical error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and a sample $S = (x_1, \ldots, x_m)$ the empirical error or empirical risk of h is defined by Training set $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m 1_{h(x_i) \neq c(x_i)}$. (2.2)

Interpret: average mistakes a hypothesis h makes on a sample

Empirical risk

Definition 2.2 (Empirical error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and a sample $S = (x_1, \ldots, x_m)$ the empirical error or empirical risk of h is defined by Training set $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m 1_{h(x_i) \neq c(x_i)}$ (2.2) Interpret: average mistakes a hypothesis h makes on a sample stochastic version $\widehat{R}_{\mathcal{S}}(f) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{f(x) \neq y}.$

$$
R(h) = \mathop{\mathbb{P}}_{(x,y)\sim \mathcal{D}}[h(x) \neq y] = \mathop{\mathbb{E}}_{(x,y)\sim \mathcal{D}}[1_{h(x)\neq y}].
$$

risk (in population): not accessible

Empirical risk minimization

Empirical risk minimization

Empirical risk minimization

$$
R(h) \leq \widehat{R}_S(h) + \sqrt{\frac{2d \log \frac{em}{d}}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}} \cdot \frac{1}{2\left(\sqrt{1/m} \right)} \tag{3.29}
$$