Neural Network Basics

CPT_S 434/534 Neural network design and application

Today's class includes

- Bag-of-words features (hand-crafted)
 - TF-IDF for text data
 - HOG for image data
- History of convolutional neural networks
 - Difference from conventional machine learning methods such as linear models (from the viewpoint of feature generation)
- Feedforward networks: a simple kind of neural networks
 - Typical structure, properties and examples

House price prediction

House price prediction

• TF-IDF (term frequency-inverse document frequency)

t: a term d: a document D: a set of documents $\operatorname{tfidf}(\overline{t},d,D) = \operatorname{tf}(t,d) \cdot \operatorname{idf}(t,D)$

• TF-IDF (term frequency-inverse document frequency)

TF-IDF (term frequency—inverse document frequency)

• TF-IDF (term frequency-inverse document frequency)

• TF-IDF (term frequency-inverse document frequency)

TF-IDF (term frequency—inverse document frequency)

• TF-IDF (term frequency-inverse document frequency)

TF-IDF (term frequency—inverse document frequency)

Image from <u>https://heartbeat.fritz.ai/spam-filtering-using-bag-of-words-1c5484ff07f1</u>

TF-IDF (term frequency—inverse document frequency)

Image from https://heartbeat.fritz.ai/spam-filtering-using-bag-of-words-1c5484ff07f1

Q: How to generate a bag-ofwords feature for an image?

• Oriented gradients?

• Gradients: changes in X and Y directions

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/

• Oriented gradients?

• Gradients: changes in X and Y directions

X direction G_{χ} Subtract the value on the left from the pixel value on the right: $G_{\chi} = 89-78 = 11$

Pixel values in the image

• Oriented gradients?

• Gradients: changes in X and Y directions

Pixel values in the image

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

X direction G_{χ}

Subtract the value on the left from the pixel value on the right: $G_{\chi} = 89-78 = 11$ Y direction G_y Subtract the pixel value below from the pixel value above the selected pixel: $G_y = 68-56=8$

• Oriented gradients?

- Gradients: changes in X and Y directions
- Oriented?

Pixel values in the image

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

X direction G_{χ}

Subtract the value on the left from the pixel value on the right: $G_{\chi} = 89-78 = 11$ Y direction G_y Subtract the pixel value below from the pixel value above the selected pixel: $G_y = 68-56=8$

- Oriented gradients?
 - Gradients: changes in X and Y directions
 - Oriented:

Pixel values in the image

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

X direction G_{χ}

Subtract the value on the left from the pixel value on the right: $G_{\chi} = 89-78 = 11$ Y direction G_y Subtract the pixel value below from the pixel value above the selected pixel: $G_y = 68-56=8$

- Oriented gradients?
 - Gradients: changes in X and Y directions
 - Oriented:

Pixel values in the image

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

X direction G_{χ} Subtract the value on the left from the pixel value on the right: $G_{\chi} = 89-78 = 11$ Y direction G_y Subtract the pixel value below from the pixel value above the selected pixel: $G_y = 68-56=8$

- Oriented gradients?
 - Gradients: changes in X and Y directions
 - Oriented:

Pixel values in the image

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

X direction G_{χ} Subtract the value on the left from the pixel value on the right: $G_{\chi} = 89-78 = 11$ Y direction G_y Subtract the pixel value below from the pixel value above the selected pixel: $G_y = 68-56=8$

121	10	78	96	125
48	152	68	125	111
145	78	(Φ=36) 85	89	65
154	214	56	200	66
214	87	45	102	45

Frequency						1									
Angle (Φ)	1	2	3	4	35	36	37	38	39	175	176	177	178	179	180

121	10	78	96	125
48	152	68	125	111
145	78	(Φ=36) 85	89	65
154	214	56	200	66
214 ondin	87	45	102	45

How many pixels with the corresponding

value of angle \rightarrow a vector feature

Frequency						1									
Angle (Φ)	1	2	3	4	35	36	37	38	39	175	176	177	178	179	180

Many other hand-crafted features

- Scale Invariant Feature Transform (SIFT)
- Speeded-Up Robust Feature (SURF)
- Histogram of Optical Flow (HOF)
- Motion Boundary Histogram (MBH)
- Fisher vector (FV, a similarity-based function)
- Vector of Locally Aggregated Descriptors (VLAD)
- •

Image BOW features Video BOW features

End-to-end training of neural networks

Machine Learning CAR 0 0 0 NOT CAR Classification Output Input Feature extraction **Deep Learning** CAR O lacksquareNOT CAR Feature extraction + Classification Output Input

LeNet-5 in 1999

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based learning." In *Shape, contour and grouping in computer vision*, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

ImageNet classification challenge 2012

	las	K 1			
	Те	eam name	Filename	Error (5 guesses)	Description
AlexNet	Su	uperVision	test-preds-141-146.2009-131- 137-145-146.2011-145f.	0.15315	Using extra training data from ImageNet Fall 2011 release
	Su	uperVision	test-preds-131-137-145-135- 145f.txt	0.16422	Using only supplied training data
	IS	31	pred_FVs_wLACs_weighted.txt	0.26172	Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.
	IS	51	pred_FVs_weighted.txt	0.26602	Weighted sum of scores from classifiers using each FV.
	IS	31	pred_FVs_summed.txt	0.26646	Naive sum of scores from classifiers using each FV.

ImageNet classification challenge 2012

Task 1 Error (5 guesses) Description Team name Filename Using extra training data test-preds-141-146.2009-131-AlexNet SuperVision 0.15315 from ImageNet Fall 2011 137-145-146.2011-145f. release test-preds-131-137-145-135-Using only supplied SuperVision 0.16422 training data 145f.txt Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, ISI pred_FVs_wLACs_weighted.txt 0.26172 GIST+FV, and CSIFT+FV, respectively. Weighted sum of scores ISI from classifiers using pred_FVs_weighted.txt 0.26602 each FV. Naive sum of scores from ISI pred_FVs_summed.txt 0.26646 classifiers using each FV.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 25 (2012): 1097-1105.

VGG-19 and ResNet-34

[ResNet]

• Or multilayer perceptrons (MLPs)

 $f(w; x_i) = x_i'w + b \rightarrow y_i$ Linear model

- Deep:
 - Many compositional layers

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear

e.g., activation layers

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions

 $f_m\left(\dots\left(f_2\big(f_1(w;x_i)\big)\right)\right)\to y_i$

Composition may not preserve convexity

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions

 $f_m\left(\dots\left(f_2\big(f_1(w;x_i)\big)\right)\right)\to y_i$

Composition may not preserve convexity

• Some functions f_i can be nonconvex

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward **Q**: why this name?

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward
 - Information feedforward from input to output layer

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward
 - Information feedforward from input to output layer

$$f_m\left(\dots\left(f_2(f_1(w;x_i))\right)\right) = \hat{y}_i$$

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward
 - Information feedforward from input to output layer

$$f_m\left(\dots\left(f_2(f_1(w; \mathbf{x}_i))\right)\right) = \hat{y}_i$$

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward
 - Information feedforward from input to output layer

 $f_m\left(\dots\left(f_2(f_1(w; x_i))\right)\right) = \hat{y}_i$

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward
 - Information feedforward from input to output layer

 $f_m\left(\dots\left(f_2(f_1(w;x_i))\right)\right) = \hat{y}_i$

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward
 - Information feedforward from input to output layer

$$f_m\left(\dots\left(f_2(f_1(w;x_i))\right)\right) = \hat{y}$$

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward

Q: Any non-feedforward networks?

• Information feedforward from input to output layer

- Deep:
 - Many compositional layers
- Nonlinearity
 - Some functions f_i can be nonlinear
- Nonconvexity
 - Composition of functions
 - Some functions f_i can be nonconvex
- Feedforward

Q: Any non-feedforward networks? Contains circles → recurrent networks

Information feedforward from input to output layer

References

• [ResNet] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.