
Neural Network Basics
CPT_S 434/534 Neural network design and application

1



Today’s class includes

• Bag-of-words features (hand-crafted)
• TF-IDF for text data

• HOG for image data

• History of convolutional neural networks
• Difference from conventional machine learning methods such as linear 

models (from the viewpoint of feature generation)

• Feedforward networks: a simple kind of neural networks
• Typical structure, properties and examples 
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We have a feature generator for text

A feature: 𝑥 ∈ ℝ𝑑

an element 
belongs to a set

d-dimension 
real number

Existing physical 
properties

A feature or 
representation

Q: How to generate 
features for text?
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Bag-of-words features

• TF-IDF (term frequency–inverse document frequency)

t: a term
d: a document
D: a set of documents
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Bag-of-words features

• TF-IDF (term frequency–inverse document frequency)

number of documents 

where the term t appears 
(i.e., tf(t, d) ≠ 0)

(A set of documents)

t: a term
d: a document
D: a set of documents
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Bag-of-words features

• TF-IDF (term frequency–inverse document frequency)

number of documents 

where the term t appears 
(i.e., tf(t, d) ≠ 0)

𝑡f(t, d): number of times term 𝑡 
occurs in document 𝑑

How much information 
the term provides
(common or rare)

(A set of documents)

t: a term
d: a document
D: a set of documents

determined once 
we have a corpus D
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Bag-of-words features

• TF-IDF (term frequency–inverse document frequency)

number of documents 

where the term t appears 
(i.e., tf(t, d) ≠ 0)

𝑡f(t, d): number of times term 𝑡 
occurs in document 𝑑

How much information 
the term provides
(common or rare)

(A set of documents)

t: a term
d: a document
D: a set of documents

determined once 
we have a corpus D

(seen as a coefficient)
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Bag-of-words features

• TF-IDF (term frequency–inverse document frequency)

Image from https://heartbeat.fritz.ai/spam-filtering-using-bag-of-words-1c5484ff07f1 
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Bag-of-words features

• TF-IDF (term frequency–inverse document frequency)

Image from https://heartbeat.fritz.ai/spam-filtering-using-bag-of-words-1c5484ff07f1 

a text feature vector
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Bag-of-words features

Q: How to generate a bag-of-
words feature for an image?
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Histogram of oriented gradients

• Oriented gradients?
• Gradients: changes in X and Y directions

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 
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Histogram of oriented gradients
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Histogram of oriented gradients

• Oriented gradients?
• Gradients: changes in X and Y directions

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 

X direction 𝐺𝑥

Subtract the value on the 
left from the pixel value 
on the right:
𝐺𝑥 = 89-78 = 11
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Histogram of oriented gradients

• Oriented gradients?
• Gradients: changes in X and Y directions

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 

X direction 𝐺𝑥

Subtract the value on the 
left from the pixel value 
on the right:
𝐺𝑥 = 89-78 = 11

Y direction 𝐺𝑦

Subtract the pixel value 
below from the pixel value 
above the selected pixel:
𝐺𝑦 = 68-56=8
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Histogram of oriented gradients
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Histogram of oriented gradients

• Oriented gradients?
• Gradients: changes in X and Y directions

• Oriented: 

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 

𝐺𝑦/𝐺𝑥 = tan(Φ)
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Histogram of oriented gradients

• Oriented gradients?
• Gradients: changes in X and Y directions

• Oriented: 

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 

Φ = tan−1(𝐺𝑦/𝐺𝑥)
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X direction 𝐺𝑥

Subtract the value on the 
left from the pixel value 
on the right:
𝐺𝑥 = 89-78 = 11

Y direction 𝐺𝑦

Subtract the pixel value 
below from the pixel value 
above the selected pixel:
𝐺𝑦 = 68-56=8

𝐺𝑦/𝐺𝑥 = tan(Φ)

Pixel values in the image
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Histogram of oriented gradients

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 
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Histogram of oriented gradients

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 
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(Φ)

(Φ=36)

How many pixels with the corresponding 
value of angle → a vector feature
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Many other hand-crafted features

• Scale Invariant Feature Transform (SIFT)

• Speeded-Up Robust Feature (SURF)

• Histogram of Optical Flow (HOF)

• Motion Boundary Histogram (MBH)

• Fisher vector (FV, a similarity-based function)

• Vector of Locally Aggregated Descriptors (VLAD)

• ……

Image BOW features

Video BOW features
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End-to-end training of neural networks
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
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ImageNet classification challenge 2012

AlexNet
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ImageNet classification challenge 2012

AlexNet
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AlexNet

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional 
neural networks." Advances in neural information processing systems 25 (2012): 1097-1105.

5 convolutional layers 2 fully connected 
layers
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VGG-19 and ResNet-34

[ResNet]
31



Feedforward networks

• Or multilayer perceptrons (MLPs)

𝑓 𝑤; 𝑥𝑖 = 𝑥𝑖
′𝑤 + 𝑏 → 𝑦𝑖 Linear model
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Weight Bias 
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Feedforward networks
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Feedforward networks

• Or multilayer perceptrons (MLPs)

𝑓 𝑤; 𝑥𝑖 = 𝑥𝑖
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Weight Bias 

Linear model
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Feedforward networks

• Or multilayer perceptrons (MLPs)

𝑓 𝑤; 𝑥𝑖 = 𝑥𝑖
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other functions
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extracted/generated
(hand-crafted)
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Feedforward networks

• Or multilayer perceptrons (MLPs)

𝑓 𝑤; 𝑥𝑖 = 𝑥𝑖
′𝑤 + 𝑏 → 𝑦𝑖

Weight Bias 

Linear model

𝑓 𝑤; 𝑥𝑖

𝑓2(𝑓1 𝑤; 𝑥𝑖 ) 𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖

1st layer

final layer or output layer

Hidden layers

If we composite 
another function

If we composite 
other functions

Features must be 
extracted/generated
(hand-crafted)

Feature extraction/generation is not necessary
Features can be learned by hidden layers
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Feedforward networks

• Deep:
• Many compositional layers
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear e.g., activation layers
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear

• Nonconvexity 
• Composition of functions
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear

• Nonconvexity 
• Composition of functions Composition may not preserve convexity
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear

• Nonconvexity 
• Composition of functions

• Some functions 𝑓𝑖  can be nonconvex

Composition may not preserve convexity

𝑓𝑚 … 𝑓2 𝑓1 𝑤; 𝑥𝑖 → 𝑦𝑖
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear

• Nonconvexity 
• Composition of functions

• Some functions 𝑓𝑖  can be nonconvex

• Feedforward    Q: why this name?
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear

• Nonconvexity 
• Composition of functions
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear

• Nonconvexity 
• Composition of functions

• Some functions 𝑓𝑖  can be nonconvex

• Feedforward
• Information feedforward from input to output layer

Q: Any non-feedforward networks?
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Feedforward networks

• Deep:
• Many compositional layers

• Nonlinearity
• Some functions 𝑓𝑖  can be nonlinear

• Nonconvexity 
• Composition of functions

• Some functions 𝑓𝑖  can be nonconvex

• Feedforward
• Information feedforward from input to output layer

Q: Any non-feedforward networks?
Contains circles → recurrent networks
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