
Convolutional Layer and 
Convolutional Neural Networks

Neural Networks Design And Application
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History
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Review: house price prediction

14234

3

99163

1

4.3214

6.378

…

3

1

Land size (sqft)

#bedrooms

Zip code

Carpet (Y/N)

Description text

#bathrooms

Garage (Y/N)

Assume:
We have a feature generator for text

A feature: 𝑥 ∈ ℝ𝑑

an element 
belongs to a set

d-dimension 
real number

Existing physical 
properties

A feature or 
representation

Q: How to generate 
features for text?
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Review: histogram of oriented gradients

• Oriented gradients?
• Gradients: changes in X and Y directions

• Oriented: 

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 

X direction 𝐺𝑥
Subtract the value on the 
left from the pixel value 
on the right:
89-78 = 11

Y direction 𝐺𝑦
Subtract the pixel value 
below from the pixel value 
above the selected pixel:
68-56=8
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Review: histogram of oriented gradients

• Oriented gradients?
• Gradients: changes in X and Y directions

• Oriented: 

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 

X direction 𝐺𝑥
Subtract the value on the 
left from the pixel value 
on the right:
89-78 = 11

Y direction 𝐺𝑦
Subtract the pixel value 
below from the pixel value 
above the selected pixel:
68-56=8

Φ = tan−1(𝐺𝑦/𝐺𝑥)

Φ = tan(𝐺𝑦/𝐺𝑥)
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Review: histogram of oriented gradients

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/ 
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Review: ImageNet challenge 2012

AlexNet
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Review: LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
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What is convolutional neural network?

A grayscale image

0 → 255 (8 bits)
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What is convolutional neural network?

A grayscale image

An image → a matrix

10



Convolution for images (matrices)

∗

Involving two matrices
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Convolution for images (matrices)

∗

Involving two matrices

Given image

Filter 
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Convolution for images (matrices)

∗

Involving two matrices

Given image

Filter 

SmallerLarger
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Convolution for images (matrices)

∗

Finding pairs
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Convolution for images (matrices)

∗

Finding pairs
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Convolution for images (matrices)

∗

Finding pairs
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Convolution for images (matrices)

∗

Finding pairs
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Convolution for images (matrices)

∗

Finding pairs
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Convolution for images (matrices)

∗

Q: how many pairs we have?

Finding pairs
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Convolution for images (matrices)

∗

Q: how many pairs we have?

(5-3+1) * (5-3+1)=9

Finding pairs
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Convolution for images (matrices)

∗

Inner product of each pair
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Convolution for images (matrices)

Inner product of each pair

Elementwise multiplication + summation

∗
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Convolution for images (matrices)

Inner product of each pair

Elementwise multiplication + summation

∗

Q: what is your result for the first pair? 23



Convolution for images (matrices)

∗

Inner product of each pair

Elementwise multiplication + summation
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Convolution for images (matrices)

∗
= 4

Inner product of each pair

Elementwise multiplication + summation
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Convolution for images (matrices)

∗

Q: the second pair?
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Convolution for images (matrices)

∗
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Convolution for images (matrices)

∗ = 3
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Convolution for images (matrices)

∗ = 3

We can repeat for each pair

29



Convolution for images (matrices)

∗ →
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Convolution for images (matrices)

∗ →

Place each element 
according to their positions
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Convolution for images (matrices)

∗ →

Place each element 
according to their positions

Row: 1
Column: 1
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Convolution for images (matrices)

∗ →

Place each element 
according to their positions

Row: 1
Column: 2
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Convolution for images (matrices)

∗ →

Place each element 
according to their positions

Row: 3
Column: 3
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Convolution for images (matrices)

∗ →

n=5 m=3 Q: dimension?
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Convolution for images (matrices)

∗ →

n=5 m=3 n-m+1=3
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Convolution for images (matrices)

∗ →

n=5 m=3 n-m+1=3

One matrix One matrix One matrix
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Convolution for images (matrices)

∗ →

n=5 m=3 n-m+1=3

One matrix One matrix One matrix

One input matrix * one filter → one feature matrix
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Convolution for images (tensors)
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Convolution for images (tensors)
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Convolution for images (tensors)

Q: why we care about tensors?
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Convolution for images (tensors)

Q: why we care about tensors?

Image from https://e2eml.school/convert_rgb_to_grayscale.html 
42
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Convolution for images (tensors)

Q: why we care about tensors?

Image from https://e2eml.school/convert_rgb_to_grayscale.html 

Reason 1:
RGB channels are more common

43
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Convolution for images (tensors)

Q: why we care about tensors?

Image from https://e2eml.school/convert_rgb_to_grayscale.html 

Reason 1:
RGB channels are more common

Each channel → a matrix

44

https://e2eml.school/convert_rgb_to_grayscale.html


LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
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Subsampling operations

• Max pooling
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Subsampling operations

• Max pooling

Q: what does max 
Pooling really do?
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Subsampling operations

• Max pooling

• Average pooling
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Subsampling operations

• Max pooling

• Average pooling

Q: what does average 
Pooling really do?
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Subsampling operations

• Max pooling

• Average pooling
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Subsampling operations

• Max pooling

• Average pooling

No overlapping
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Subsampling operations

• Max pooling

• Average pooling

No overlapping

(stride=2*2)
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Subsampling operations

• Max pooling

• Average pooling

No overlapping

(stride=2*2)

Row stride = 2
Column stride = 2
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Subsampling operations

• Max pooling

• Average pooling

No overlapping

(stride=2*2)

Row stride = 2
Column stride = 2

Q: Why pooling? 
     Connection to subsampling?
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Subsampling operations

• Max pooling

• Average pooling

No overlapping

(stride=2*2)

Row stride = 2
Column stride = 2

Q: Why pooling? 
     Connection to subsampling?

4*4 → 2*2
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Subsampling operations

• Max pooling

• Average pooling

No overlapping

(stride=2*2)

Row stride = 2
Column stride = 2

Q: Why pooling? 
     Connection to subsampling?

4*4 → 2*2

Dimension reduced 58



Subsampling operations

• Max pooling

• Average pooling

No overlapping

(stride=2*2)

Row stride = 2
Column stride = 2

Q: Why pooling? 
     Connection to subsampling?

4*4 → 2*2

Dimension reduced
Use one to represent all
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

Q: Why 6 matrices?
Q: Why 16 matrices?
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

Q: Why 6 matrices?
Q: Why 16 matrices? A (reason 2): we can use multiple filters at each layer
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

Q: Why 6 matrices?
Q: Why 16 matrices? A (reason 2): we can use multiple filters at each layer
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

Q: Why 6 matrices?
Q: Why 16 matrices?

Subsampling layer: max/average pooling

A (reason 2): we can use multiple filters at each layer

63



LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

One more question:
How C5 comes from?
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

One more question:
How C5 comes from? Matrices → a vector?
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LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

66

One more question:
Where C5 comes from? 16 matrices → a 120d vector?



LeNet-5 in 1999

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
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Where C5 comes from? 16 matrices → a 120d vector?



Operations with convolution layers

• Padding

• Pooling layers for arbitrary input resolution
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

∗ →

n=5 m=3 n-m+1=3
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

∗ →

n=5 m=3 n-m+1=3

If m>1 → ??
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

∗ →

n=5 m=3 n-m+1=3

If m>1 → convolution will reduce the dimension
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

∗ →

n=5 m=3 n-m+1=3

If m>1 → convolution will reduce the dimension
The input resolution introduces a limits of #convolution layers
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

0-padding
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

0-padding

n→7

Input size

76



Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

→ n-m+1=7-3+1=5n→7

0-padding

Input size

Output size
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

→ n-m+1=7-3+1=5n→7

Conclusion: 
dimension of feature maps remains the same

0-padding
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Operations with convolution layers

• Padding: convolution operation reduces the size of feature maps

• Pooling layers for an arbitrary input resolution
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Input resolution issue

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
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Input resolution issue

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

We use 120 5x5 filters
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Input resolution issue

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

We use 120 5x5 filters But why 5x5?
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Input resolution issue

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

We use 120 5x5 filters But why 5x5?

6@5x5 kernels
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Input resolution issue

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

We use 120 5x5 filters But why 5x5?

6@5x5 kernels 16@5x5 kernels
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Input resolution issue

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

We use 120 5x5 filters But why 5x5?

6@5x5 kernels 16@5x5 kernels
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Input resolution issue

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based 
learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

We use 120 5x5 filters But why 5x5?

6@5x5 kernels 16@5x5 kernels

Q: What if 64x64?
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Input resolution issue

Image from https://www.mathworks.com/help/images/ref/imcrop.html 
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Input resolution issue

Image from https://www.mathworks.com/help/images/ref/imresize.html 
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Input resolution issue

[Alexnet]
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Input resolution issue

[Alexnet]

Q: can you understand the following architecture?
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Input resolution issue

[Alexnet]

Any input image must be 224x224
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Input resolution issue

[Alexnet]

Any input image must be 224x224

Q: how to handle an arbitrary resolution?
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Input resolution issue

• Spatial pyramid pooling [pyramid]

• Global average pooling [NIN]

• ……
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Input resolution issue

• Spatial pyramid pooling
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Input resolution issue

• Spatial pyramid pooling

256 filters in conv5
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Input resolution issue

• Spatial pyramid pooling

256 filters in conv5

256 feature maps 
(matrices) Some pooling (max/average)

One number
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Input resolution issue

• Spatial pyramid pooling

256 filters in conv5

256 feature maps 
(matrices) Some pooling (max/average)

Four numbers

97



Input resolution issue

• Spatial pyramid pooling

256 filters in conv5

256 feature maps 
(matrices) Some pooling (max/average)

16 numbers
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Input resolution issue

• Spatial pyramid pooling

256 filters in conv5

256 feature maps 
(matrices)

Concatenation:
( 1+4+16 ) x 256 numbers

99



Input resolution issue

Max pooling
100



Input resolution issue

Max pooling

Predefined 

Depends on:
1. Previous feat map size
2. Pooling size

Input dimension

Pool size
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Input resolution issue

Max pooling

Predefined 

Depends on:
1. Previous feat map size
2. Pooling size

Input dimension

Pool size
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Input resolution issue

Max pooling

Predefined 

Depends on:
1. Previous feat map size
2. Pooling size

Concatenation:
( 1+4+16 ) x 256 numbers

Input dimension

Pool size
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Input resolution issue

Max pooling

Predefined 

Depends on:
1. Previous feat map size
2. Pooling size

Concatenation:
( 1+4+16 ) x 256 numbers

Arbitrary size

Input dimension

Pool size
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Input resolution issue

• Global average pooling
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Input resolution issue

• Global average pooling

16@5x5 kernels
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Input resolution issue

• Global average pooling

16@5x5 kernels

107

change to
10@5x5 kernels

The number of classes



Input resolution issue

• Global average pooling

16@5x5 kernels

10@5x5
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change to

change to
10@5x5 kernels

The number of classes



Input resolution issue

• Global average pooling

16@5x5 kernels

10@5x5
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change to

change to
10@5x5 kernels

The number of classes

Average pooling over 
each matrix (f. map) 
to generate a scalar



Input resolution issue

• Global average pooling

16@5x5 kernels

10@5x5
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change to

change to
10@5x5 kernels

The number of classes

Average pooling over 
each matrix (f. map) 
to generate a scalar

10@1



Input resolution issue

• Global average pooling

16@5x5 kernels

10@5x5

111

change to

change to
10@5x5 kernels

The number of classes

Average pooling over 
each matrix (f. map) 
to generate a scalar

10@1

Each element is 
the prediction 
of each class



References 

• LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. 
"Object recognition with gradient-based learning." In Shape, contour 
and grouping in computer vision, pp. 319-345. Springer, Berlin, 
Heidelberg, 1999.
• Online at http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf 
• Section 2.2
• Understand architecture of LeNet-5

• LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-
based learning applied to document recognition." Proceedings of the 
IEEE 86, no. 11 (1998): 2278-2324.
• Online at http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 
• Section II.B
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