Convolutional Layer and Convolutional Neural Networks

Neural Networks Design And Application

History

Review: house price prediction

Review: histogram of oriented gradients

• Oriented gradients?

- Gradients: changes in X and Y directions
- Oriented:

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

X direction G_{χ}

Subtract the value on the left from the pixel value on the right: 89-78 = 11 Y direction G_y Subtract the pixel value below from the pixel value above the selected pixel: 68-56=8

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/

Review: histogram of oriented gradients

• Oriented gradients?

- Gradients: changes in X and Y directions
- Oriented:

X direction G_{χ} Subtract the value on the left from the pixel value on the right: 89-78 = 11 Y direction G_y Subtract the pixel value below from the pixel value above the selected pixel: 68-56=8

F

|--|

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

Review: histogram of oriented gradients

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45
	7			

Frequency						1									
Angle	1	2	3	4	35	36	37	38	39	175	176	177	178	179	180

Credit for https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/

Review: ImageNet challenge 2012

Task 1 Error (5 guesses) Description Team name Filename Using extra training data test-preds-141-146.2009-131-AlexNet 0.15315 SuperVision from ImageNet Fall 2011 137-145-146.2011-145f. release Using only supplied test-preds-131-137-145-135-SuperVision 0.16422 145f.txt training data Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, ISI pred_FVs_wLACs_weighted.txt 0.26172 GIST+FV, and CSIFT+FV, respectively. Weighted sum of scores ISI 0.26602 from classifiers using pred_FVs_weighted.txt each FV. Naive sum of scores from ISI 0.26646 pred_FVs_summed.txt classifiers using each FV.

Review: LeNet-5 in 1999

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based learning." In *Shape, contour and grouping in computer vision*, pp. 319-345. Springer, Berlin, Heidelberg, 1999.

What is **convolutional** neural network?

A grayscale image

What is **convolutional** neural network?

A grayscale image

Finding pairs

Q: how many pairs we have?

Finding pairs Q: how many pairs we have? (5-3+1) * (5-3+1)=9

Inner product of each pair

Q: what is your result for the first pair?

Q: the second pair?

= 3

We can repeat for each pair

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

*

1	0	1
0	1	0
1	0	1

4
3
4
2
4
3
4

 \rightarrow

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

*

1	0	1
0	1	0
1	0	1

4	3	4
2	4	3
2	3	4

 \rightarrow

*

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1

 \rightarrow

*

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1

 \rightarrow

*

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

 1
 0
 1

 0
 1
 0

 1
 0
 1

 \rightarrow

*

n=5

 1
 0
 1

 0
 1
 0

 1
 0
 1

m=3

4
3
4
3
4
3
4

 \rightarrow

Q: dimension?

*

n=5

 1
 0
 1

 0
 1
 0

 1
 0
 1

m=3

 \rightarrow

4	3	4
2	4	3
2	3	4

n-m+1=3
Convolution for images (matrices)

*

One matrix

m=3

One matrix

 \rightarrow

n-m+1=3

One matrix

Convolution for images (matrices)

One input matrix * one filter \rightarrow one feature matrix

Q: why we care about tensors?

Q: why we care about tensors?

Image from <u>https://e2eml.school/convert_rgb_to_grayscale.html</u>

Q: why we care about tensors?

Reason 1: RGB channels are more common

Image from <u>https://e2eml.school/convert_rgb_to_grayscale.html</u>

Q: why we care about tensors?

Reason 1: RGB channels are more common Each channel → a matrix

Image from <u>https://e2eml.school/convert_rgb_to_grayscale.html</u>

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5 in 1999

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5 in 1999

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

• Max pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
		2 poc	x 2 I size
	100	184	
	12	45	

• Max pooling

Q: what does max Pooling really do?

- Max pooling
- Average pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
		2 poo	x 2 I size
	100	184	
	12	45	

15	28	184
100	70	38
12	7	2
12	45	6
	2 poo	x 2 I size
36	80	
12	15	
	15 100 12 12 36 12	15 28 100 70 12 7 12 45 2 2 36 80 12 15

- Max pooling
- Average pooling

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
		2 poc	x 2 I size
	100	2 poc	x 2 I size

Q: what does average Pooling really do?

31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
		2 poo	x 2 I size
	36	80	
	12	15	

- Max pooling
- Average pooling

29	15	28	184	
0	100	70	38	
12	12	7	2	
12	12	45	6	
		2 poo	x 2 I size	
	100	184		
	12	45		

31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
	,	2 poo	x 2 I size
	36	80	

58

- Max pooling
- Average pooling

No overlapping (stride=2*2)

Row stride = 2 Column stride = 2

Q: Why pooling? Connection to subsampling?

4*4 → 2*2

Dimension reduced

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
		2 poc	x 2 ol size
	100 12	184 45	

31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
	,	2 poo	x 2 I size
	36	80	
1			

Use one to represent all

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

One more question:

Where C5 comes from? 16 matrices \rightarrow a 120d vector?

Layer C5 is a convolutional layer with 120 feature maps. **Each** unit is connected to a 5x5 neighborhood on all 16 32x32 of S4's feature maps. Here, because the size of S4 is also 5x5, the size of C5's feature maps is 1x1: this amounts to a full connection between S4 and C5. C5 is labeled as a convolutional layer, instead of a fully-connected layer, because if LeNet-5 input were made bigger with everything onnections else kept constant, the feature map dimension would be larger than 1x1. This process of dynamically increasing the Fig. 1. size of a convolutional network is described in the section s recognition. Section VII. Layer C5 has 48,120 trainable connections. strained to be identical.

One more question:

Where C5 comes from? 16 matrices \rightarrow a 120d vector?

Layer C5 is a convolutional layer with 120 feature maps. **Example** Each unit is connected to a 5x5 neighborhood on all 16 32x32 of S4's feature maps. Here, because the size of S4 is also 5x5, the size of C5's feature maps is 1x1: this amounts to a full connection between S4 and C5. C5 is labeled as a convolutional layer, instead of a fully-connected layer, because if LeNet-5 input were made bigger with everything onnections else kept constant, the feature map dimension would be larger than 1x1. This process of dynamically increasing the Fig. 1. size of a convolutional network is described in the section s recognition. Section VII. Layer C5 has 48,120 trainable connections. strained to be identical.

- Padding
- Pooling layers for arbitrary input resolution

• Padding: convolution operation reduces the size of feature maps

*

• Padding: convolution operation reduces the size of feature maps

m=3

 \rightarrow

n-m+1=3

• Padding: convolution operation reduces the size of feature maps

If m>1 \rightarrow ??

• Padding: convolution operation reduces the size of feature maps

If m>1 \rightarrow convolution will reduce the dimension
• Padding: convolution operation reduces the size of feature maps

If m>1 \rightarrow convolution will reduce the dimension The input resolution introduces a limits of #convolution layers

• Padding: convolution operation reduces the size of feature maps

• Padding: convolution operation reduces the size of feature maps

• Padding: convolution operation reduces the size of feature maps

Input size $n \rightarrow 7$

• Padding: convolution operation reduces the size of feature maps

Input size $n \rightarrow 7 \rightarrow n-m+1=7-3+1=5$ Output size

• Padding: convolution operation reduces the size of feature maps

 $n \rightarrow 7 \rightarrow n-m+1=7-3+1=5$

Conclusion: dimension of feature maps remains the same

- Padding: convolution operation reduces the size of feature maps
- Pooling layers for an arbitrary input resolution

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Original Image

Original Image

Image from https://www.mathworks.com/help/images/ref/imresize.html

Q: can you understand the following architecture?

Any input image must be 224x224

Any input image must be 224x224

Q: how to handle an arbitrary resolution?

[Alexnet]

- Spatial pyramid pooling [pyramid]
- Global average pooling [NIN]

•

• Spatial pyramid pooling

• Spatial pyramid pooling

input image

256 filters in conv5

256 feature maps

(matrices)

feature maps of conv₅ (arbitrary size)

convolutional layers

Some pooling (max/average)

Some pooling (max/average)

16 numbers

Some pooling (max/average)

Spatial pyramid pooling

Concatenation: (1+4+16) x 256 numbers

29	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
		2 x 2 pool size	
	100	184	
	12	45	

• Global average pooling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

• Global average pooling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

• Global average pooling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

• Global average pooling

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

References

- LeCun, Yann, Patrick Haffner, Léon Bottou, and Yoshua Bengio. "Object recognition with gradient-based learning." In Shape, contour and grouping in computer vision, pp. 319-345. Springer, Berlin, Heidelberg, 1999.
 - Online at http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf
 - Section 2.2
 - Understand architecture of LeNet-5
- LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradientbased learning applied to document recognition." *Proceedings of the IEEE* 86, no. 11 (1998): 2278-2324.
 - Online at http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
 - Section II.B

References

 [Alexnet] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems* 25 (2012): 1097-1105. Conference proceeding version at <u>https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-</u>

<u>Abstract.html</u> or <u>https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-</u> <u>Paper.pdf</u> (Section 3.5)

- [pyramid] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Spatial pyramid pooling in deep convolutional networks for visual recognition." *IEEE transactions on pattern analysis and machine intelligence* 37, no. 9 (2015): 1904-1916. ArXiv version at https://arxiv.org/abs/1406.4729 (Section 2.2)
- [NIN] Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." *arXiv* preprint arXiv:1312.4400 (2013). ArXiv version at <u>https://arxiv.org/abs/1312.4400</u> (Section 3.2)